Взаимосвязь частоты сердечных сокращений и систем синтеза энергии

Автор работы: Пользователь скрыл имя, 02 Мая 2012 в 13:22, статья

Описание

Знания о биохимическом аспекте механизма сердечных сокращений особенно важны для студентов факультета физической культуры и спорта, т.к. частота сердечных сокращений является своеобразным интегральным показателем состояния организма, и ее изменения тесно связаны с комплексом физиологических изменений, возникающих в ответ на регулярную физическую нагрузку. Измерение частоты сердечных сокращений (ЧСС) с помощью мониторов сердечного ритма - наиболее простой и удобный способ контроля интенсивности физической нагрузки во время занятий спортом и физической культурой.

Работа состоит из  1 файл

статья Мащук Е.А..doc

— 54.00 Кб (Скачать документ)


Е.А. Мащук, преп-стажёр каф. химии и МПХ ПГУ

 

ВЗАИМОСВЯЗЬ ЧАСТОТЫ СЕРДЕЧНЫХ СОКРАЩЕНИЙ И СИСТЕМ СИНТЕЗА ЭНЕРГИИ – КАК СПОСОБ КОНТРОЛЯ ИНТЕНСИВНОСТИ ФИЗИЧЕСКОЙ НАГРУЗКИ

 

Введение

      Знания о биохимическом аспекте механизма сердечных сокращений особенно важны для студентов факультета физической культуры и спорта, т.к. частота сердечных сокращений является своеобразным интегральным показателем состояния организма, и ее изменения тесно связаны с комплексом физиологических изменений, возникающих в ответ на регулярную физическую нагрузку. Измерение частоты сердечных сокращений (ЧСС) с помощью мониторов сердечного ритма - наиболее простой и удобный способ контроля интенсивности физической нагрузки во время занятий спортом и физической культурой. Мониторы сердечного ритма помогают не только контролировать выполняемую физическую нагрузку, но и на основании полученной объективной информации анализировать тренировочный процесс и результаты соревнований. Использование мониторов сердечного ритма помогает индивидуализировать тренировочные нагрузки в зависимости от текущего функционального состояния спортсмена. Только с помощью мониторов сердечного ритма появилась возможность контролировать и анализировать функциональные возможности спортсмена во время соревнований. Уже одно только знание среднего значения ЧСС во время соревнований помогает охарактеризовать текущее функциональное состояние спортсмена и в зависимости от этого спланировать последующую тренировочную нагрузку.

      Также важно представлять, какие взаимоотношения имеются между характером сердечной деятельности и другими реакциями организма на регулярную физическую нагрузку. Основы спортивной физиологии помогают взглянуть на тренировочный процесс как на комплекс адаптационных процессов, направленных на приспособление организма к регулярно совершаемой физической нагрузке, и механизмы повышения тренированности и спортивных результатов. К сожалению, не имея достаточного специального технического оснащения, многие тренируются без учета влияния того или иного вида тренировочной нагрузки не только на спортивную форму, но и на уровень здоровья спортсмена.

Материалы и методы

На протяжении более чем двух десятилетий проводились научно-исследовательские работы по оценке изменения частоты сердечных сокращений во время и после совершения того или иного вида физической нагрузки. Эти исследования продемонстрировали определенную закономерность изменений ЧСС в зависимости от степени восстановления организма после перенесенной физической нагрузки.

      Важнейшим показателем, дающим тренерам и самим спортсменам информацию о функциональном состоянии, является вариабельность сердечного ритма, которая отражает различие в продолжительности соседних (следующих друг за другом) сердечных циклов. Целенаправленные исследовательские работы были проведены советскими специалистами в области спортивной медицины, о чем свидетельствуют имеющиеся научно-практические публикации.

 

Результаты и обсуждение

      Для совершения физической нагрузки различной интенсивности необходима энергия, обеспечивающая процесс мышечного сокращения. В организме существует несколько систем синтеза энергии, которые используются для обеспечения того или иного вида физической нагрузки. Все эти системы объединяет то, что конечным энергетическим субстратом является аденозинтрифосфорная кислота (АТФ). Существует несколько механизмов синтеза АТФ: с использованием кислорода (аэробный путь), без использования кислорода (анаэробный путь), а также с образованием или без образования молочной кислоты (лактата).

      

      Ниже представлена наиболее простая схема образования АТФ:

      1. креатинфосфат (КФ) + аденозиндифосфат (АДФ) - креатин + АТФ анаэробный, без образования лактата энергетический путь

      2. глюкоза + АДФ - лактат + АТФ (гликолиз) анаэробный, с образованием лактата энергетический путь

      3. глюкоза + кислород + АДФ - вода + углекислота (С02) + АТФ аэробный, без образования лактата энергетический путь

      4. жиры + кислород + АДФ - вода + углекислота (С02) + АТФ аэробный, без образования лактата энергетический путь

       Каждый из представленных энергетических путей имеет важное значение для обеспечения физической нагрузки того или иного вида физической нагрузки.

      

      Креатинфосфатная система обеспечивает энергией физическую нагрузку максимальной интенсивности и минимальной продолжительности, так как запасы креатинфосфата ограничены и они полностью расходуются в течение 6-8 секунд. Поэтому эта система имеет наиважнейшее значение для бега на спринтерские дистанции, Успех спринтера во многом определяется запасами креатинфосфата перед стартом, а также правильно спланированным тренировочным процессом, направленным, в частности, на тренировку креатинфосфатной системы.

             Основной целью развития креатинфосфатной системы является увеличение содержания креатинфосфата в мышцах. Это достигается совершением тренировочной работы высокой интенсивности в 80-90 % от максимальной. Продолжительность выполняемых упражнений очень короткая от 5-10 до 20 секунд, а интервалы между повторным выполнением нагрузки должны быть достаточно продолжительными (от 1 мин. и более). Так как такие виды тренировок осуществляются с высокой ЧСС, то они могут быть рекомендованы только спортсменам с достаточной степенью тренированности сердечно-сосудистой системы, и, соответственно, их нежелательно использовать у спортсменов старших возрастных групп.

      Образование АТФ из глюкозы в условиях недостатка кислорода характерно для продолжительной физической нагрузки высокой интенсивности. В такой ситуации уже недостаточно аэробных путей образования энергии для обеспечения мышечной работы, поддерживающей высокую скорость прохождения дистанции. Однако лактатная система недостаточно эффективна по сравнению с аэробными по количеству образующейся энергии, что выражается в значительно меньшем количестве молекул АТФ, синтезируемых из глюкозы в отсутствие кислорода. Несовершенность гликолиза заключается также и в том, что он сопровождается образованием и накоплением значительного количества молочной кислоты (лактата), которое сопровождается нежелательными эффектами. Накапливающаяся молочная кислота (особенно в работающих мышцах) вызывает закисление тканей организма и нарушение их функционального состояния. В частности, нарушаются процессы сокращения и расслабления скелетной мускулатуры, что в итоге приводит к мышечной усталости и неспособности спортсмена поддерживать высокую скорость прохождения дистанции.

      

      Повышение уровня лактата указывает на неспособность аэробных систем энергообеспечения обеспечивать преодоления физической нагрузки высокой интенсивности.

      Высокие концентрации лактата в крови являются отражением развития ацидоза (закисления) как внутри самих мышечных клеток (внутриклеточный ацидоз), так и в межклеточных пространствах, их окружающих (внеклеточный ацидоз). Закисление мышечных клеток приводит к серьезным метаболическим нарушениям. Функционирование многих ферментных систем, в том числе аэробного энергообеспечения, резко нарушается при развитии ацидоза, что, в частности, отрицательно отражается на аэробной емкости. Причем изменения эти могут длительно сохраняться. Так например, может понадобиться несколько дней для полного восстановления аэробной емкости после преодоления физической нагрузки, сопровождавшейся значительным накоплением лактата. Частое неконтролируемое повторение такой нагрузки при отсутствии полного восстановления аэробных систем приводит к развитию перетренированности. Длительное сохранение внутри- и внеклеточного ацидоза сопровождается повреждением клеточных стенок скелетной мускулатуры. Это сопровождается возрастанием концентрации в крови внутриклеточных веществ, содержание которых в крови при отсутствие повреждения мышечных клеток минимально. К таким веществам относятся креатин-фосфокиназа (КФК) и мочевина. Увеличение концентрации этих веществ -явный признак повреждения мышечных клеток. Если для снижения концентрации этих веществ в крови требуется 24-96 часов, то для полного восстановления нормальной структуры мышечных клеток необходим значительно более длительный период. В этот период возможно проведение тренировочной нагрузки только восстановительного характера.

      Повышение уровня лактата сопровождается одновременным нарушением координации движений, что отчетливо проявляется в высокотехничных видах спорта. При уровне лактата в 6-8 ммоль/л проведение тренировок по отработке технических приемов считается нецелесообразным, т.к. при нарушенной координации движений сложно добиться технически грамотного исполнения требуемых упражнений,

      При ацидозе, связанном с накоплением лактата, резко возрастает риск травмирования спортсменов. Нарушение целостности клеточных оболочек скелетных мышц приводит к их микронадрывам. Резкие и нескоординированные движения могут привести и к более серьезным травматическим повреждениям (надрывы или разрывы мышц, сухожилий, повреждения суставов).

      В "закисленных" мышцах замедляется ресинтез (повторное образование) креатинфосфата. Это следует учитывать при тренировках спринтеров, особенно при подведении к соревнованиям. В это время следует избегать интенсивных физических нагрузок, сопровождающихся накоплением лактата и истощением запасов креатинфосфата.

      Разработаны специальные методики тренировки лактатной системы, направленные на повышение устойчивости организма к усиленному образованию и накоплению молочной кислоты. Основная задача таких тренировок сводится к адаптации организма спортсмена преодолевать соревновательную нагрузку в условиях повышенного образования и накопления молочной кислоты.

      Виды тренировок лактатной системы:

      1. Повторные тренировки.

      Физическая нагрузка высокой интенсивности и продолжительностью от 20 до 180 секунд чередуется с интервалами отдыха от 30 до 60 минут. Интервалы отдыха не должны быть слишком продолжительными, иначе будет происходить снижение содержания лактата. Обычно это достаточно жесткие по своей интенсивности тренировочные занятия, требующие тщательного контроля состояния спортсмена и правильного выбора объема и продолжительности нагрузки.

      2. Длительные тренировки высокой интенсивности.

      Как правило, соответствуют прохождению дистанции с соревновательной или немного уступающей ей скоростью или интенсивностью. Продолжительность такой нагрузки колеблется от 20 до 60 и более минут и соответственно зависит от возраста и уровня тренированности спортсмена. Аналогом таких тренировок могут быть контрольные тренировки или подводящие старты, а также сами соревнования.

      Анаэробный (или лактатный) порог - важнейший физиологический показатель, отражающий уровень тренированности организма и взаимоотношение между аэробными и анаэробными путями энергообеспечения физической нагрузки, а также между величиной ЧСС и интенсивностью физической нагрузки. Чем выше анаэробный порог, тем более тренирован спортсмен, и его организм имеет более развитую аэробную систему энергообеспечения, мощность которой может составлять 80 до 90% от максимального потребления кислорода. При этом сам анаэробный порог наступает на более высокой ЧСС. С биохимических позиций анаэробный порог соответствует повышению уровня лактата в крови до 4 ммоль/л. Эта концентрация лактата рассматривается как рубеж между аэробными и анаэробными путями энергообеспечения физической нагрузки.

      Чем выше уровень анаэробного порога, тем лучше тренированность организма и тем лучший спортивный результат спортсмен готов показать.

     

Заключение

Важно знать, что анаэробный порог и большинство других физиологических показателей индивидуальны для каждого спортсмена. Планируя тренировочные нагрузки, тренер должны учитывать их значения. Целесообразно несколько раз в год проводить тестирование и обследование спортсменов для выявления возможных изменений.

Учёт частоты сердечных сокращений очень важен не только для спортсменов-профессионалов, но и для всех людей, которые подвергаются физическим нагрузкам в профилактических или лечебных целях. А значит, знания в данной области необходимы будущим специалистам в области физической культуры и спорта.

 

 

 

 

 

 

 

 

 

Литература

 

1. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. // М.: Медицина, 1998.

2. Бородин Е.А. Биохимический диагноз (физиологическая роль и диагностическое значение биохимических компонентов крови и мочи): Учебное пособие в 2-х частях. // Благовещенск, 1991.

3. Мелихова М.А. Динамика биохимических процессов в организме человека при мышечной деятельности // ГЦОЛИФК. - М., 1992.

4. Рогозкин В.А. Биохимическая диагностика в спорте // ГДОИФК. им. П.Ф. Лесгафта. - Л., 1988 - с.50.

5. Северин Е.С. БИОХИМИЯ // М.: Медицина, 2004

6. Южикова О.С., Бурлаков А.Ю. ИСПОЛЬЗОВАНИЕ БИОХИМИЧЕСКИХ КРИТЕРИЕВ КОНТРОЛЯ СОРЕВНОВАТЕЛЬНОЙ ДЕЯТЕЛЬНОСТИ ПЛОВЦОВ В ПРОЦЕССЕ МНОГОЛЕТНЕЙ ПОДГОТОВКИ // Успехи современного естествознания. – 2008. – № 9 – С. 67-68

 

 

 

 

3

 



Информация о работе Взаимосвязь частоты сердечных сокращений и систем синтеза энергии