Ионизирующие излучения и защита от них. Нормы радиационной безопасности в мирное время (НРБ-99), в военное время и при ЧС

Автор работы: Пользователь скрыл имя, 07 Октября 2011 в 13:30, реферат

Описание

С ионизирующим излучением и его особенностями человечество познакомилось совсем недавно: в 1895 году немецкий физик В.К. Рентген обнаружил лучи высокой проникающей способности, возникающие при бомбардировке металлов энергетическими электронами (Нобелевская премия, 1901 г.), а в 1896 г. А.А. Беккерель обнаружил естественную радиоактивность солей урана.

Содержание

ВВЕДЕНИЕ.

ПОНЯТИЕ ИОНИЗИРУЮЩЕГО ИЗЛУЧЕНИЯ. ОСНОВНЫЕ МЕТОДЫ ОБНАРУЖЕНИЯ ИИ.

ОСНОВЫ РАДИОАКТИВНОЙ БЕЗОПАСНОСТИ. НОРМЫ РАДИАЦИОННОЙ БЕЗОПАСНОСТИ (НРБ-99).

КРИТЕРИИ ДЛЯ ПРИНЯТИЯ РЕШЕНИЙ В РАЗЛИЧНЫХ СИТУАЦИЯХ. ТРЕБОВАНИЯ К КОНТРОЛЮ ЗА ВЫПОЛНЕНИЕМ НОРМ.

СПИСОК ИСПОЛЬЗОВАННОЙ ЛИТЕРАТУРЫ:

Работа состоит из  1 файл

защита от ионизирующих излучений.docx

— 126.97 Кб (Скачать документ)

а) облучение  персонала и населения в условиях радиационной аварии;

б) облучение  персонала и населения в условиях нормальной эксплуатации техногенных  источников ИИ;

в) облучение  работников предприятий и населения  природными источниками ИИ;

г) медицинское  облучение населения…

 
 

[1] Радиоактивное облучение, полученное в течение первых четырёх суток, принято называть однократными, а за большое время – многократными. Доза радиации, не приводящая к снижению работоспособности (боеспособности) личного состава формирований (личного состава армии во время войны): однократная (в течение первых четырёх суток) – 50 рад; многократная: в течение первых 10-30 суток – 100 рад; в течение трёх месяцев – 200 рад; в течение года – 300 рад. Не путать, речь идёт о потере работоспособности, хотя последствия облучения сохраняются. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Реферат: Ионизирующие излучения   

МИНИСТЕРСТВО ОБРАЗОВАНИЯ  РОССИЙСКОЙ ФЕДЕРАЦИИ

                   ДАЛЬНЕВОСТОЧНЫЙ ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ                  

                         ИНСТИТУТ МЕНЕДЖМЕНТА И БИЗНЕСА                        

КАФЕДРА БЕЗОПАСТНОСТИ  ЖИЗНЕДЕЯТЕЛЬНОСТИ И ГО

     ИОНИЗИРУЮЩИЕ ИЗЛУЧЕНИЯ. ВНЕШНЕЕ И ВНУТРЕННЕЕ ОБЛУЧЕНИЕ. ДЕЙСТВИЕ НА ОРГАНИЗМ.

                                ПРОФИЛАКТИКА.                               

                                                         Реферат студента 23 гр.

                                                                 Журавлева В. М.

    

Спасск-Дальний

 

                                      2002                                     

    

     

Оглавление

 

ВВЕДЕНИЕ.......................................................................3

Виды ионизирующих излучений....................................................4

Источники радиоактивного облучения.............................................6

Влияние ионизирующих излучений на живые организмы  и защита от них..............7

Вывод.........................................................................10

Список использованной литературы..............................................11

    

ВВЕДЕНИЕ

 

ИЛИ С ЧЕГО ВСЕ НАЧИНАЛОСЬ

 

Радиоактивность – отнюдь не новое явление; новизна  состоит лишь в том, как люди

пытались ее использовать. И радиоактивность, и сопутствующие ей

ионизирующие  излучения существовали на Земле задолго до зарождения на ней

жизни и присутствовали в космосе до возникновения самой  Земли.

     Ионизирующее излучение сопровождало и Большой взрыв, с которого, как мы

сейчас  полагаем, началось существование нашей  Вселенной около 20 миллиардов лет

назад. С того времени  радиация наполняет  космическое пространство.

Радиоактивные материалы вошли  в состав Земли  с самого ее рождения. Даже человек

слегка  радиоактивен, так как во всякой живой ткани присутствует в следовых

количествах радиоактивные вещества. Но с момента открытия этого универсального

фундаментального  открытия прошло лишь немногим более ста  лет.  В 1896

году  французский ученый Анри  Беккерель  положил несколько  фотографических

пластинок в ящик стола, придавив их кусками какого-то материала, содержащего

уран. Когда он проявил  пластинки, то, к своему удивлению, обнаружил  на них

следы каких-то излучений, которые он приписал урану. Вскоре этим явлением

заинтересовалась  Мария Кюри, молодой  химик, полька по происхождению, которая и

ввела в обиход слова  “радиоактивность”. В 1898 году она и  ее муж Пьер Кюри

обнаружили, что уран после  излучения превращается в другие химические элементы.

Один  из этих элементов  супруги назвали  полонием в память о родине

Марии Кюри, а еще один – радием, поскольку  по-латыни это слово

обозначает  “испускающий лучи”. И открытие Беккереля, и исследования супругов

Кюри  были подготовлены более  ранним, очень важным событием в научном  мире –

открытием в 1895 году рентгеновских  лучей; эти лучи были названы так по имени

открывшего  их (тоже, в общем, случайно) немецкого  физика Вильгельма Рентгена.

Беккерель один из первых столкнулся с самым неприятным свойством

радиоактивного  излучения: речь идет о его воздействии  на ткани живого

организма. Ученый положил пробирку с радием в карман и получил в результате

ожог кожи. Мария  Кюри умерла, по всей видимости, от одного из злокачественных

заболеваний крови, поскольку  слишком часто подвергалась воздействию

радиоактивного  излучения. По крайней мере 336 человек, работавших с

радиоактивными  материалами в то время, умерли в  результате облучения.

Несмотря на это, небольшая группа талантливых и  большей частью молодых ученых

направила свои усилия на разгадку одной из самых волнующих  загадок всех

времен, стремясь проникнуть в самые сокровенные  тайны материи.

    

Виды  ионизирующих излучений

 

Главным объектом исследования ученых был сам атом, вернее – его строение. Мы

знаем теперь, что  атом похож на Солнечную систему  в миниатюре:  вокруг

крошечного ядра движутся по орбитам “планеты”  – электроны. Размеры ядра в сто

тысяч раз меньше размеров самого атома, но плотность  его очень велика,

поскольку масса  ядра почти равна массе самого атома. Ядро, как правило,

состоит из нескольких более мелких частиц, которые плотно сцеплены друг с

другом.

Некоторые из этих частиц имеют положительный заряд  и называются протонами

. Число протонов  в ядре и определяет, к какому  химическому элементу относится

данный атом: ядро атома водорода содержит всего один протон, атома кислорода –

8, урана – 92. В каждом атоме число электронов в точности равно числу

протонов в ядре; каждый электрон несет отрицательный  заряд, равный по

абсолютной величине заряду протона, так что в целом  атом нейтрален.

В ядре, как правило, присутствуют и частицы другого  типа, называемые

нейтронами, поскольку они нейтральны. Ядра атомов одного и того же элемента

всегда содержат одно и то же число протонов, но число  нейтронов в них может

быть различным. Атомы, имеющие ядра с одинаковым числом протонов, но

различающиеся по числу нейтронов, относятся к разным разновидностям одного и

того же химического  элемента, называемым изотопами данного элемента.

Чтобы отличить их друг от друга, к символу приписывают число, равное сумме всех

частиц в ядре данного изотопа. Так, уран-238 содержит 92 протона, но 143

нейтрона; в уране-235 тоже 92 протона, но 143 нейтрона. Ядра всех изотопов

химических элементов  образуют группу нуклидов.

Некоторые нуклиды  стабильны, то есть в отсутствии внешнего воздействия

никогда не претерпевают никаких превращений.

Большинство же нуклидов нестабильны, они все время превращаются в другие

нуклиды. В качестве примера возьмем хотя бы атом урана-238, в ядре которого

протоны и нейтроны едва удерживаются вместе силами сцепления. Время от

времени из него вырывается компактная группа из четырех частиц: двух протонов

и двух нейтронов (α-излучение). Уран-238 превращается, таким  образом, в

торий-234, в ядре которого содержатся 90 протонов и 144 нейтрона. Далее

следуют иные превращения (показанные ниже в таблице), сопровождаемые

излучениями, и  вся цепочка в конце концов оканчивается стабильным нуклидом

свинца. Разумеется, существует много таких цепочек  самопроизвольных

превращений разных нуклидов по разным схемам превращений  и их комбинациям.

    

Вид излучения

Нуклид

Период  полураспада

α

Уран-238

4,47 млрд. лет
β Торий-234 21,4 суток
β Проактиний-234 1,17 минут
α Уран-234 245000 лет
α Торий-230 8000 лет
α Радий-226 1600 лет
α Радон-222 3,823 суток
α Полоний-218 3,05 минут
β Свинец-214 26,8 минут
β Висмут-214 19,7 минут
α Полоний-214 0,000164 секунды
β Свинец-210 22,3 лет
β Висмут-210 5,01 суток
α Полоний-210 134,8 суток
  Свинец-206 стабильный
 

    

γ-кванты
 
 

    

β-излучение

 
 

    

α-излучение

 
 

    

    

    

 
 
 

    

    

                   
   

Бумага

 
 

Человек

 
 

Металл

 
                   
 
Рис. Три  вида излучений и их проникающая  способность
 
 
                   
             
 

    

При каждом акте распада  нуклида высвобождается энергия, которая  и передается

дальше в виде излучения.

Существуют три  вида ионизирующих излучений:

·        α-излучение:

Представляет собой  поток ядер атомов гелия, называемых α–частицами.

Начальная скорость альфа-частиц достигает 10000-20000 км./сек. Они обладают

большой ионизирующей способностью. Длина пробега альфа-частиц в воздухе

Информация о работе Ионизирующие излучения и защита от них. Нормы радиационной безопасности в мирное время (НРБ-99), в военное время и при ЧС