Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 14:13, реферат
Радиоактивностью называют неустойчивость ядер некоторых атомов, которая проявляется в их способности к самопроизвольному превращению (по научному — распаду), что сопровождается выходом ионизирующего излучения (радиации). Энергия такого излучения достаточно велика, поэтому она способна воздействовать на вещество, создавая новые ионы разных знаков. Вызывать радиацию с помощью химических реакций нельзя, это полностью физический процесс.
Излучение радиоактивных веществ. Естественные радиоактивные элементы испускают три вида излучений: альфа, бета и гамма. В 1899 Резерфорд идентифицировал альфа- и бета-излучение; спустя год П.Вийар открыл гамма-излучение.
Альфа-излучение. В воздухе
при атмосферном давлении альфа-излучение
преодолевает лишь небольшое расстояние,
как правило, от 2,5 до 7,5 см. В условиях
вакуума электрическое и
Бета-излучение. Это излучение
обладает большей проникающей
Гамма-излучение. Гамма-излучение проникает в вещество гораздо глубже, чем альфа- и бета-излучения. Оно не отклоняется в магнитном поле и, следовательно, не имеет электрического заряда. Гамма-лучи были идентифицированы как жесткое (т.е. имеющее очень высокую энергию) электромагнитное излучение. Разделение радиоактивного излучения в магнитном поле на альфа-, бета- и гамма-лучи схематично показано на рисунке.
СХЕМА ЭКСПЕРИМЕНТА, иллюстрирующего отклонение разных видов радиоактивного излучения в магнитном поле.
Теория радиоактивного распада. В процессе эмиссии радиоактивного излучения вещество претерпевает ряд изменений. Так, например, излучение радия сопровождается выделением газообразного радона ("эманацией"). В свою очередь радон, распадаясь, оставляет радиоактивные отложения на стенках содержащего его сосуда. Собранная при распаде радия эманация теряет половину исходной активности примерно за 4 сут. Эти и другие не поддававшиеся интерпретации экспериментальные факты удалось объяснить с помощью теории радиоактивного распада атомов, предложенной Резерфордом и Содди в 1903, а также правила смещения, сформулированного в 1913 А.Расселом и независимо от него Фаянсом и Содди. Суть теории Резерфорда и Содди состоит в том, что в результате радиоактивного распада происходит превращение одного химического элемента в другой.
Правило смещения. Правило смещения точно указывает, какие именно превращения претерпевает химический элемент, испуская радиоактивное излучение.
Эмиссия альфа- и бета-частиц. Правило смещения можно пояснить с помощью ядерной модели атома, предложенной Резерфордом в 1911. Согласно этой модели, в центре атома находится положительно заряженное ядро, в котором сосредоточена основная часть массы атома. Вокруг ядра вращаются электроны, заряд которых компенсирует положительный заряд ядра. Каждому атому приписывается свой атомный номер Z, соответствующий его порядковому номеру в периодической таблице Менделеева и численно равный заряду ядра, выраженному в единицах заряда электрона. Альфа-частица имеет Z = 2 и массовое число (округленный атомный вес) A = 4. Если неустойчивое ядро испускает бета-частицу, то его Z увеличивается на единицу, а массовое число не изменяется. Следовательно, радиоактивный атом превращается в следующий по порядку атом таблицы Менделеева. При эмиссии альфа-частицы Z и A вновь образованного ядра уменьшаются на 2 и 4 единицы соответственно, а дочерний атом, испытав соответствующее изотопическое превращение, "смещается" в таблице Менделеева влево от родительского элемента.
Гамма-излучение. Орбитальные электроны, получив избыток энергии, могут переходить на более высокие энергетические уровни. Возвращаясь в основное (нормальное) состояние, они отдают избыток энергии в виде света или рентгеновского излучения. Ядра атомов, обладающие избыточной энергией, также могут переходить в возбужденное состояние. Подобное возбуждение часто испытывают ядра, образующиеся в процессе радиоактивных превращений. Переходя в основное состояние, они излучают избыток энергии в виде гамма-квантов. Особый интерес представляет вариант распада, когда радиоактивное ядро имеет большое время жизни возбужденного состояния. В этом случае у находящихся в разных энергетических состояниях одинаковых ядер (с одинаковыми значениями Z и A) наблюдаются однотипные радиоактивные распады, но происходят они с разными скоростями, поскольку одни ядра распадаются из возбужденного, а другие из основного состояния. Это явление получило название ядерной изомерии, а возбужденное и нормальное ядра называются изомерами.
Радиоактивные ряды. Правило смещения позволило проследить превращения естественных радиоактивных элементов и выстроить из них три генеалогических дерева, родоначальниками которых являются уран-238, уран-235 и торий-232. Каждое семейство начинается с чрезвычайно долгоживущего радиоактивного элемента. Урановое семейство, например, возглавляет уран с массовым числом 238 и периодом полураспада 4,5*10 9 лет (в табл. 1 в соответствии с первоначальным названием обозначен как уран I).
Применение радиоактивности.
Медицина. Радий и другие
естественные радиоизотопы
Научные исследования. Радиоактивные метки, в микроколичествах введенные в физические или химические системы, позволяют следить за всеми происходящими в них изменениями. Например, выращивая растения в атмосфере радиоактивного диоксида углерода, химики смогли понять тонкие детали процесса образования в растениях сложных углеводов из диоксида углерода и воды. В результате непрерывной бомбардировки земной атмосферы космическими лучами с высокой энергией находящийся в ней азот-14, захватывая нейтроны и испуская протоны, превращается в радиоактивный углерод-14. Полагая, что интенсивность бомбардировки и, следовательно, равновесное количество углерода-14 в последние тысячелетия оставались неизменными и учитывая период полураспада C-14 по его остаточной активности, можно определять возраст найденных остатков животных и растений (радиоуглеродный метод). Этим методом удалось с большой достоверностью датировать обнаруженные стоянки доисторического человека, существовавшие более 25 000 лет тому назад.
Экспрессные методы определения
радиоактивности пищевых
Экспрессные методы определения
радиоактивности в любых
В лабораториях СЭС, Госагропрома, Укоопсоюза, торговых организаций и других министерств и ведомств в настоящее время используют «Методику экспрессного определения объемной и удельной активности бета-излучающих нуклидов в воде, продуктах питания, продукции растениеводства и животноводства методом «прямого» измерения «толстых» проб.
В ней можно выделить пять основных операций:
отбор и подготовка проб исследуемого материала к измерениям;
подготовка радиометра «Бета» или другого имеющегося у вас прибора к работе;
измерение фона;
замер проб исследуемого материала (пищевых продуктов, сырья, воды и других объектов окружающей среды);
расчет радиоактивности (удельной массовой или объемной активности) проб и сопоставление их с допустимой нормой.
Отбор и подготовка проб исследуемого материала к измерениям. Для системного анализа ваших исследований на протяжении нескольких месяцев или ряда лет следует завести журнал, в котором записывать дату, вид измеряемой продукции, тип прибора (он у вас через год-два может поменяться), место отбора проб (например, в каком лесу и когда собраны грибы, ягоды и т. д.) и результаты измерений (расчетов).
Отбор проб растений производят,
как правило, на тех же участках,
что и пробы почв. Для получения
объединенной пробы растений массой
0,5—1 кг натуральной влажности, рекомендуется
отбирать не менее 8—10 точечных проб. Надземную
часть травяного покрова
Нижняя часть растений часто загрязнена почвой. В этом случае либо нужно срезать растения выше, либо тщательно отмыть материал дистиллированной водой. С посевов сельскохозяйственных культур следует брать пробы по диагонали поля или ломанной кривой. Объединенную пробу составляют из 8—10 точечных проб, взятых либо из наземной части растений или раздельно — стеблей и листьев, плодов, зерна, корнеплодов, клубнеплодов.
Отбор проб зерна производят по всей глубине насыпи зерна или мешка. Ручным щупом точечные пробы отбирают из верхнего и нижнего слоев, касаясь щупом дна. Общая масса точечных проб при отборе должна быть не менее 1 кг. Зерно перемешивают.
Пробы клубнеплодов и корнеплодов отбирают из буртов, насыпей, куч, автомашин, прицепов, вагонов, барж, хранилищ и непосредственно из земли. Пробы отбирают от однородной партии любого количества, одного сортотипа, заготовленного с одного поля, хранящегося в одинаковых условиях.
Точечные пробы отбирают по диагонали боковой поверхности бурта, насыпи, куч через равные расстояния на глубине 20— 30 см. Клубни и корнеплоды берут в трех точках подряд.
Среднюю пробу для анализа выделяют изобъединенной, масса ее должна быть 1 кг.
Отбор проб травы и зеленой массы. С пастбищ или сенокосных угодий пробы отбирают непосредственно перед выпасом животных или скашиванием на корм, для чего на выбранном для отбора проб участке выделяют 8—10 учетных площадок размером 1 или 2 м2, размещая их по диагонали участка. Травостой скашивают (срезают) на высоте 3—5 см. Полученную со всех точечных проб или учетных площадок зеленую массу собирают на полог, тщательно перемешивают и расстилают ровным слоем, получая таким образом объединенную пробу, из которой отбирают среднюю пробу для анализа. Для составления средней пробы, масса которой должна быть 1 кг, траву берут порциями по 100 г из 10 различных мест.
Пробы грубых кормов, хранящихся в скирдах, стогах отбирают по периметру скирд, стогов на равных расстояниях друг от друга на высоте 1—1,5 м от поверхности земли со всех доступных сторон с глубины не менее 0,5 м.
Отбор проб продуктов (круп, бобовых, семян и т. п.) аналогичен методам отбора проб зерна. Яблоки, помидоры, баклажаны и др. отбирают по методу отбора корнеплодов и т. п. Из небольших партий продуктов (ягоды, зелень и т. п.) точечные пробы берут в четырех-пяти местах. Объединенная проба по весу или объему не должна превышать трехкратного количества, необходимого для измерения на соответствующем приборе.
Отбор молока и молочных продуктов производят из небольших емкостей (бидон, фляга и др.). Отбирают после перемешивания, а из крупных (цистерна, чан) — с разной глубины емкости кружкой с удлиненной ручкой или специальным пробоотборником. Величина средней пробы составляет 0,2—1 л и зависит от величины всей партии продукции.
Отбор проб мяса, органов сельскохозяйственных животных и птицы выполняют на убойных пунктах колхозов, совхозов, мясокомбинатах, рынках, в личных хозяйствах, а также магазинах.
Пробы мяса (без жира) от туш или полутуш отбирают кусками по 30—50 г в области четвертого-пятого шейных позвонков, лопатки, бедра и толстых частей спинных мышц. Общая масса пробы должна составлять 0,2—0,3 кг. Для специального лабораторного исследования отбирают также кости в количестве 0,3—0,5 кг (позвоночник и второе-третье ребро). Пробы внутренних органов животных отбирают в количествах: печень, почки, селезенка, легкие — 0,1 — 0,2 кг, щитовидная железа — весь орган. Птицу (цыплят) берут целыми тушками. Кур, индеек, уток, гусей — до 1/4 тушки. Количество проб определяется объемом и характером исследований.
Отбор проб рыбы производят на рыбокомбинатах, хладокомбинатах, рынках, в магазинах, а также при отлове — непосредственно в водоемах. Мелкие экземпляры рыб берут целыми тушками, крупные — только их среднюю часть. Исследованию подлежат все виды рыбы. Масса средней пробы составляет 0,3—0,5 кг. Количество проб определяется объемом и характером исследований.
Пробы яиц отбирают на птицефабриках, птицефермах совхозов, колхозов, на рынке, в магазинах и личных хозяйствах. Величина пробы — 2—3 яйца.
Отбор проб натурального меда производят на пасеках, в магазинах, на рынках, складах и базах хозяйств и потребкооперации.
Забор меда производят трубчатым алюминиевым пробоотборником (если мед жидкий) или щупом для масла (если мед плотный) из разных слоев продукции. Закристаллизованный мед отбирают коническим щупом, погружая его в мед под наклоном. При исследовании сотового меда из одной соторамки вырезают часть сота площадью 25 см2. Если сотовый мед кусковой, пробу берут в тех же объемах от каждой упаковки. После удаления восковых крышечек образцы меда помещают на сетчатый фильтр с диаметром ячеек не более 1 мм, вложенный в стакан, и ставят в духовку газовой плиты при температуре 40— 45 °С. Масса средней пробы — 0,2—0,3 кг.
Пробы шерсти, технической кости, рого-копытного, пушно-мехового сырья и шкур отбирают аналогично с последующим механическим дроблением или измельчением. Масса пробы — 100—200 г.
Отбор проб соков, сиропов, варенья, воды, компотов производят из перемешанной, однородной массы. Масса пробы — 100—200 г.
Информация о работе Экспресс-методы определения радиоактивности в продовольствии и воде