Газовая хромография

Автор работы: Пользователь скрыл имя, 25 Января 2012 в 19:44, реферат

Описание

Газовая хроматография (ГХ) - хроматография, в которой подвижная фаза находится в состоянии газа или пара - инертный газ (газ-носитель). Неподвижной фазой является высокомолекулярная жидкость, закрепленная на пористый носитель или на стенки длинной капиллярной трубки, или только твердое пористое вещество, заполняющее колонку , в следствии чего газовая хроматография подразделяется на газо-жидкостную и газо-твердофазную.

Работа состоит из  1 файл

4 газовая хромография.doc

— 76.50 Кб (Скачать документ)

4. Газовая хроматография

     Газовая хроматография (ГХ) - хроматография, в  которой подвижная фаза находится  в состоянии газа или пара - инертный газ (газ-носитель).  Неподвижной  фазой  является  высокомолекулярная  жидкость, закрепленная на пористый носитель или на стенки длинной капиллярной трубки, или только твердое пористое вещество, заполняющее колонку , в следствии чего газовая хроматография подразделяется на газо-жидкостную и газо-твердофазную. Газовая  хроматография - универсальный  метод  разделения  смесей  разнообразных  веществ,  испаряющихся  без  разложения.  При  этом компоненты  разделяемой  смеси  перемещаются  по  хроматографической колонке  с  потоком  газа-носителя. По мере  движения  разделяемая  смесь многократно распределяется между  газом-носителем (подвижной фазой) и неподвижной фазой. Принцип разделения - неодинаковое сродство веществ к летучей подвижной фазе и стационарной фазе в колонке. Компоненты смеси селективно задерживаются последней,  поскольку сродство их  к этой  фазе  различно,  и  таким образом разделяются (компонентам с большим сродством требуется большее время для выхода из неподвижной фазы, чем компонентам с меньшим сродством). Затем вещества выходят из колонки и регистрируются детектором. Сигнал детектора записывается в виде хроматограммы автоматическим  потенциометром (самописцем)  или же  регистрируется  компьютером. 

Области применения газовой хроматографии 

     Метод ГХ — один из самых современных методов многокомпонентного анализа, его отличительные черты — экспрессность, высокая точность, чувствительность, автоматизация. Метод позволяет решить многие аналитические проблемы. Количественный ГХ анализ можно рассматривать как самостоятельный аналитический метод, более эффективный при разделении веществ, относящихся к одному и тому же классу (углеводороды, органические кислоты, спирты и т.д.).

Рис. Пример разделения смеси газов с использованием ГХ. 

     Этот  метод незаменим в нефтехимии (бензины содержат сотни соединений, а керосины и масла —тысячи), его  используют при определении пестицидов, удобрений, лекарственных препаратов, витаминов, наркотиков и др. При анализе сложных многокомпонентных смесей успешно применяют метод капиллярной хроматографии, поскольку число теоретических тарелок для 100 м колонки достигает (2—3)*105. Возможности метода ГХ существенно расширяются при использовании реакционной газовой хроматографии (РГХ), вследствие того что многие нелетучие, термонеустойчивые или агрессивные вещества непосредственно перед введением в хроматографическую колонку могут быть переведены с помощью химических реакций в другие — более летучие и устойчивые. Химические превращения осуществляют чаще на входе в хроматографическую колонку, иногда в самой колонке или на выходе из нее перед детектором. Значительно удобнее проводить превращения вне хроматографа. Недостатки метода РГХ связаны с появлением новых источников ошибок и возрастанием времени анализа. Реакционную хроматографию часто используют при определении содержания микроколичеств воды. Вода реагирует с гидридами металлов, с карбидом кальция или металлическим натрием и др., продукты реакции (водород, ацетилен) детектируются с высокой чувствительностью пламенно-ионизационным детектором. К парам воды этот детектор малочувствителен. Широко применяют химические превращения в анализе термически неустойчивых биологических смесей. Обычно анализируют производные аминокислот, жирных кислот С10—C20, сахаров, стероидов. Для изучения высокомолекулярных соединений (олигомеры, полимеры, каучуки. смолы и т.д.) по продуктам их разложения используют пиролизную хроматографию. В этом методе испарение пробы заменяют пиролизом.Карбонаты металлов можно проанализировать по выделяющемуся диоксиду углерода при обработке их кислотами.Методом газовой хроматографии можно определять металлы, переводя их в летучие хелаты. Особенно пригодны для хроматографирования хелаты 2-, 3- и 4-валентных металлов с b-дикетонами. Лучшие хроматографические свойства проявляют b-дикетонаты Be(II), Al(III), Sc(III), V(III), Cr(III). Газовая хроматография хелатов может конкурировать с другими инструментальными методами анализа. ГХ используют также в препаративных целях для очистки химических препаратов, выделения индивидуальных веществ из смесей. Метод широко применяют в физико-химических исследованиях: для определения свойств адсорбентов, термодинамических характеристик адсорбции и теплот адсорбции, величин поверхности твердых тел, а также констант равновесия, коэффициентов активности и др. При помощи газового хроматографа, установленного на космической станции "Венера-12", был определен состав атмосферы Венеры. Газовые хроматографы устанавливают в жилых отсеках космических кораблей: организм человека выделяет много вредных веществ, и их накопление может привести к большим неприятностям. При превышении допустимых норм вредных веществ автоматическая система хроматографа дает команду прибору, который очищает воздух. 

     Регулятор расхода газа

     Предназначение  этого компонента газового хроматографа — контроль расхода газа в системе, а также поддержка необходимого давления газа на входе в систему. Обычно в качестве регулятора расхода  газа используются редуктор или дроссель. 

     Устройство  ввода пробы

     Предназначено для подачи пробы анализируемой  смеси в хроматографическую колонку.

     В том случае, если хроматограф предназначен для анализа жидких проб, устройство ввода проб совмещается с испарителем.

     Проба вводится в испаритель при помощи микрошприца путём прокалывания эластичной прокладки. Испаритель обычно нагрет до температуры, превышающей температуру самой колонки на 50 °C. Объём вводимой пробы — несколько микролитров 

     Хроматографические  колонки

     Под колонкой подразумевается сосуд, длина которого значительно больше диаметра. Для газовой хроматографии обычно используют U-образные или спиральные колонки. Внутренний диаметр колонок — 2-15 мм, а длина — 1-20 м. Материалом для изготовления колонок служит стекло, нержавеющая сталь, медь, иногда фторопласт. В последнее время наибольшее распространение получили капиллярные колонки изготовленные из плавленного кварца, с нанесенной внутри неподвижной фазой. Длина подобных колонок может достигать сотен и даже тысяч метров, хотя чаще используются колонки длиной 30-50 м.

     Крайне  важно плотное наполнение колонок  неподвижной фазой, а также обеспечение  постоянства температуры колонки  в течение всего процесса хроматографирования. Точность поддержания температуры  должна составлять 0,05-1 °C. Для точного регулирования и поддержания температуры используют термостаты. 

     Детекторы

     Детекторы предназначены для непрерывного измерения концентрации веществ  на выходе из хроматографической колонки. Принцип действия детектора должен быть основан на измерении такого свойства аналитического компонента, которым не обладает подвижная фаза.

В газовой  хроматографии используют следующие  виды детекторов:

    • пламенно-ионизационный детектор
    • детектор по теплопроводности (катарометр)
    • детектор электронного захвата
    • пламенно-фотометрический детектор
    • термоионный детектор
    • фотоионизационный детектор
    • масс-спектрометр
    • ИК-фурье спектрометр

Информация о работе Газовая хромография