Автор работы: Пользователь скрыл имя, 13 Сентября 2013 в 20:43, лабораторная работа
Цель работы:
1. Изучить структуру углеродистых сталей в равновесном состоянии.
2. Научиться определять примерный химический состав углеродистых сталей в равновесном состоянии.
3. Ознакомиться с классификацией и маркировкой углеродистых сталей.
Оборудование: Микроскопы МИМ-7 и МИМ-8 и микрошлиф углеродистых сталей, альбом микроструктур.
6.
Содержание углерода оказывает существенное влияние на свойства стали. С повышением содержания углерода прочностные характеристики повышаются, пластичность и ударная вязкость снижаются. С ростом содержания углерода в структуре стали увеличивается количество цементита, при одновременном снижении доли феррита. Изменение соотношения между составляющими приводит к уменьшению пластичности, а также к повышению прочности и твердости. Прочность повышается до содержания углерода около 1%, а затем она уменьшается, так как образуется грубая сетка цементита вторичного.
Углерод влияет на вязкие свойства. Увеличение содержания углерода повышает порог хладноломкости и снижает ударную вязкость.
Повышаются
Углерод оказывает влияние и на технологические свойства. Повышение содержания углерода ухудшает литейные свойства стали (используются стали с содержанием углерода до 0,4 %), обрабатываемость давлением и резанием, свариваемость. Следует учитывать, что стали с низким содержанием углерода также плохо обрабатываются резанием.
7.
Качество стали определяется содержанием вредных примесей. Основные вредные примеси - это сера и фосфор. Так же к вредным примесям относятся газы (азот, кислород, водород).
Сера - вредная примесь - попадает в сталь главным образом с исходным сырьём - чугуном. Сера нерастворима в железе, она образует с ним соединение FeS - сульфид железа. при взаимодействием с железом образуется эвтектика
( Fe + FeS ) с температурой плавления 98800С. Поэтому при нагреве стальных заготовок для пластической деформации выше 90000С сталь становится хрупкой. При горячей пластической деформации заготовка разрушается. Это явление называется красноломкостью. Одним из способов уменьшения влияния серы является введение марганца. Соединение Mns плавится при 162000С, эти включения пластичны и не вызывают красноломкости. Содержание серы в сталях допускается не более 0.06%.
Фосфор попадает в сталь главным образом также с исходным чугуном, используемым также для выплавки стали. До 1.2% фосфор растворяется в феррите, уменьшая его пластичность. Фосфор обладает большой склонностью к ликвации (от лат. liquatio — разжижение, плавление), поэтому даже при незначительном среднем количестве фосфора в отливке всегда могут образоваться участки, богатые фосфором. Расположенный вблизи границ фосфор повышает температуру перехода в хрупкое состояние (хладноломкость). Поэтому фосфор, как и сера, является вредной примесью, содержание его в углеродистой стали допускается до 0.050%.
Скрытые примеси: Так называют присутствующие в стали газы - азот, кислород, водород – ввиду сложности определения их количества. Газы попадают в сталь при её выплавке.
В твёрдой стали они могут присутствовать, либо растворяясь в феррите, либо образуя химическое соединение (нитриды, оксиды). Газы могут находиться и в свободном состоянии в различных несплошностях. Даже в очень малых количествах азот, кислород и водород сильно ухудшают пластические свойства стали. Содержание их в стали допускается до 10-2 - 10-4 %. В результате вакуумирования стали их содержание уменьшается, свойства улучшаются.
8.
Качественная конструкционная углеродистая сталь. Эта сталь отличается от стали обыкновенного качества меньшим содержанием вредных примесей, суженными пределами содержания углерода, кремния и марганца.
Сталь качественная
Качество конструкционных
Обыкновенного качества — P и S — до 0.05 % (маркировка Ст).
Качественная — P и S — до 0.035 % (маркировка Сталь).
Высококачественная — P и S — до 0.025 % (маркировка А в конце марки).
Особовысококачественная — Р и S — до 0.015 % (маркировка Ш в конце марки).
Стали конструкционные углеродистые обыкновенного качества: Широко применяются в строительстве и машиностроении, как наиболее дешёвые, технологичные, обладающие необходимыми свойствами при изготовлении конструкций массового назначения. В основном эти стали используют в горячекатанном состоянии без дополнительной термической обработки с ферритно-перлитной структурой. В зависимости от последующего назначения конструкционные углеродистые стали обыкновенного качества подразделяют на три группы: А, Б, В.
Стали группы А: Поставляются с определёнными регламентированными механическими свойствами. Их химический состав не регламентируется. Эти стали применяются в конструкциях, узлы которых не подвергаются горячей обработке — ковке, горячей штамповке, термической обработке и т. д. В связи с этим механические свойства горячекатаной стали сохраняются.
Стали группы Б: Поставляются с определённым
регламентированным химическим составом,
без гарантии механических свойств.
Эти стали применяются в
Стали группы В: Поставляются с регламентируемыми механическими свойствами и химическим составом. Эти стали применяются для изготовления сварных конструкций. Их свариваемость определяется химическим составом, а механические свойства вне зоны сварки определены в состоянии поставки. Такие стали применяют для более ответственных деталей.
По степени раскисления: Степень раскисления определяется содержанием кремния (Si) в этой стали. По степени раскисления углеродистые стали обыкновенного качества делятся на:
спокойные (СП) — 0.012-0.03 % (Si)
полуспокойные (ПС) — 0.05-0.07 % (Si)
кипящие (КП) — более 0.07 % (Si)
Маркировка
Основные марки
Ст1кп2; БСт2пс; ВСт3Гпс; Ст4-2; … ВСт6сп3.
Буква перед маркой показывает группу стали. Сталь группы А — буквой не обозначается.
Ст — показывает, что сталь обыкновенного качества.
Первая цифра — номер по ГОСТу (от 0 до 6).
Буква Г после первой цифры — повышенное содержание марганца (Mn)-(служит для повышения прокаливаемости стали).
сп; пс; кп — степень раскисления стали.
Вторая цифра — номер
Тире между цифрами указывает, что заказчик не предъявлял требований к степени раскисления стали.
Применение:
Ст1; Ст2 — проволока, гвозди, заклёпки.
Ст3; Ст4 — крепёжные детали, фасонный прокат.
Ст5; Ст6 — слабонагруженные валы, оси.
9.
Инструментальная сталь для режущего инструмента должна обладать высокой твёрдостью, износостойкостью, достаточной прочностью и вязкостью (для инструментов ударного действия).
Режущие кромки могут нагреваться до температуры 500…9000C, поэтому важным свойством является теплостойкость, т.е., способность сохранять высокую твёрдость и режущую способность при продолжительном нагреве (красностойкость).
Стали для режущего инструмента
после закалки и низкого
Углеродистые стали небольшой прокаливаемости, не обладающие теплостойкостью. Углеродистые инструментальные стали У8 (У8А), У10 (У10А), У11 (У11А), У12 (У12А) и У13 (У13А) вследствие малой устойчивости переохлажденного аустенита имеют небольшую прокаливаемость, и поэтому эти стали применяют для инструментов небольших размеров.
Для режущего инструмента (фрезы, зенкеры, сверла, спиральные пилы, шаберы, ножовки ручные, напильники, бритвы, острый хирургический инструмент и т. д.) обычно применяют заэвтектоидные стали (У 10, У11, У12 и У13), у которых после термической обработки структура — мартенсит и карбиды. Деревообрабатывающий инструмент, зубила, кернеры, бородки, отвертки, топоры изготовляют из сталей У7 и У8, имеющих после термической обработки трооститную структуру.
Углеродистые стали
в исходном (отожженном) состоянии
имеют структуру зернистого
Отпуск проводят при 150—170 °С для сохранения высокой твердости (62—63 HRC).
Сталь У7 закаливают с нагревом выше точки Ас3 (800—820 °С и подвергают отпуску при 275—325 °С (48—58 HRC) или при 400—500 °С (44—48 HRC).
Углеродистые стали
можно использовать в качестве
режущего инструмента только
для резания материалов с
Быстрорежущие стали. В отличие от других инструментальных сталей быстрорежущие стали обладают высокой теплостойкостью (красностойкостью), т.е. способностью сохранять мартенситную структуру и соответственно высокую твердость, прочность и износостойкость при повышенных температурах, возникающих в режущей кромке при резании с большой скоростью. Эти стали сохраняют мартенситную структуру при нагреве до 600—650°С, поэтому применение их позволяет значительно повысить скорость резания (в 2—4 раза) и стойкость инструментов (в 10—30 раз) по сравнению со сталями, не обладающими теплостойкостью.
Основными легирующими
элементами быстрорежущих
Широко применяемые
Для придания стали
Нетеплостойкие стали
Все шире применяют быстрорежу
10.
СТАЛИ ДЛЯ ШТАМПОВ ХОЛОДНОГО ДЕФОРМИРОВАНИЯ
Штампы для холодного
Информация о работе Изучение микроструктур углеродистых сталей в отожжённом состоянии