Конструкционные материалы

Автор работы: Пользователь скрыл имя, 28 Марта 2012 в 19:29, доклад

Описание

Используемые в технике металлы принято подразделять на две основные группы — черные и цветные. К черным металлам относят железо и его сплавы (чугун, сталь, ферросплавы). Остальные металлы и их сплавы составляют группу цветных.

Содержание

1. Общая характеристика сырья, применяемого в данном производстве.

2. Сущность доменного производства.

Работа состоит из  1 файл

Тема 1.doc

— 100.50 Кб (Скачать документ)


Введение. Производство чугуна и стали.

 

1.       Общая характеристика сырья, применяемого в данном производстве.

2.       Сущность доменного производства.

 

Используемые в технике металлы принято подразделять на две основ­ные группы — черные и цветные. К черным металлам относят железо и его сплавы (чугун, сталь, ферросплавы). Остальные металлы и их сплавы составляют группу цветных.

Из металлов особое значение имеют железо и его сплавы, являющи­еся до настоящего времени основным машиностроительным материалом. В общемировом производстве металлов свыше 90% приходятся на желе­зо и его сплавы. Это объясняется ценными физическими и механичес­кими свойствами черных металлов, а также и тем, что железные руды широко распространены в природе, а производство чугуна и стали срав­нительно дешево и просто.

Наряду с черными металлами важное значение в технике имеют цвет­ные металлы. Это объясняется рядом важных физико-химических свойств, которыми не обладают черные металлы. Наиболее широко ис­пользуют в самолетостроении, радиотехнике, электронике и в других от­раслях промышленности медь, алюминий, магний, никель, титан, воль­фрам, а также бериллий, германий и другие цветные металлы.

Особое развитие за последние 30 лет получило производство синтети­ческих материалов — пластмасс. Пластмассы и другие неметаллические материалы используют в конструкциях машин и механизмов взамен ме­таллов и сплавов. Такие материалы позволяют повысить сроки службы деталей и узлов машин и установок, снизить массу конструкций, сэкономить дефицитные цветные металлы и сплавы, снизить стоимость и трудоемкость обработки.

Рациональный выбор материалов и совершенствование технологиче­ских процессов их обработки обеспечивают надежность конструкций, снижают себестоимость и повышают производительность труда. При­кладную науку о строении и свойствах технических материалов, основ­ной задачей которой является установление связи между составом, струк­турой и свойствами, называют материаловедением.

Типы кристаллических решеток. Твердые тела делят на кристалличес­кие и аморфные. Кристаллические тела при нагреве остаются твердыми до определенной температуры (температуры плавления), при которой они переходят в жидкое состояние. Аморфные тела при нагреве размягчаются в большом температурном интервале; сначала они становятся вязкими и лишь затем переходят в жидкое состояние.

Все металлы и их сплавы - тела кристаллические. Металлами называ­ют химические элементы, характерными признаками которых являются непрозрачность, блеск, хорошая электро- и теплопроводность, пластич­ность, а для многих металлов также способность свариваться. Не поте­ряло своего научного значения определение металлов, данное более 200 лет назад великим русским ученым М. В. Ломоносовым: "Металлы суть светлые тела, которые ковать можно". Для металлов характерно то, что, вступая в химические реакции с элементами, являющимися неметалла­ми, они отдают последним свои внешние валентные электроны. Это объ­ясняется тем, что у атомов металла внешние электроны непрочно свя­заны с его ядром. Металлы имеют на наружных оболочках всего 1 -2 эле­ктрона, тогда как у неметаллов таких электронов много (5-8).

Чистые химические элементы металлов (например, железо, медь, алю­миний и др.) могут образовывать более сложные вещества, в состав которых могут входить несколько элементов-металлов, часто с примесью заметных количеств элементов-неметаллов. Такие вещества называются металлическими сплавами. Простые вещества, образующие сплав, на­зывают компонентами сплава.

Для описания кристаллической структуры металлов пользуются по­нятием кристаллической решетки. Кристаллическая решетка- это воо­бражаемая пространственная сетка, в узлах которой располагаются атомы (ионы), образующие металл. Частицы вещества (ионы, атомы), из которых построен кристалл, расположены в определенном геометриче­ском порядке, который периодически повторяется в пространстве. В от­личие от кристаллов в аморфных телах (стекло, пластмассы) атомы распо­лагаются в пространстве беспорядочно, хаотично.

Формирование кристаллической решетки в металле происходит сле­дующим образом. При переходе металла из жидкого в твердое состояние расстояние между атомами сокращается, а силы взаимодействия между ними возрастают. Характер взаимодействия атомов определяется строе­нием их внешних электронных оболочек. При сближении атомов элек­троны, находящиеся на внешних оболочках теряют связь со своими атомами вследствие отрыва валентного электрона одного атома положитель­но заряженным ядром другого и т. д. Происходит образование свободных электронов, так как они не принадлежат отдельным атомам. Таким образом, в твердом состоянии металл представляет собой структуру, состо­ящую из положительно заряженных ионов, омываемых свободными эле­ктронами.

Связь в металле осуществляется электростатическими силами. Между ионами и свободными электронами возникают электростатические силы притяжения, которые стягивают ионы. Такую связь между частицами металла называют металлической.

Силы связи в металлах определяются силами отталкивания и сила­ми притяжения между ионами и электронами. Ионы находятся на та­ком расстоянии один от другого, при котором потенциальная энергия взаимодействия минимальна. В металле ионы располагаются в опре­деленном порядке, образуя кристалли­ческую решетку. Такое расположение ионов обеспечивает взаимодействие их с валентными электронами, которые связывают ионы в кристаллической решетке.

Элементарные ячейки кристал­лических решеток:

1 — кубическая объемно-центри­рованная (а-железо), II— куби­ческая гранецентрированная (медь), III — гексагональная плотноупакованная; а и с — па­раметры решеток.

 

 

Типы кристаллических решеток у различных металлов различны. Наиболее часто встречаются решетки: объемно-цен­трированная кубическая (ОЦК) — α-Fе, Сг, W, гранецентрированная кубическая (ГЦК) — γ-Fе, А1, Сu и гексагональная плотноупакованная (ГПУ) - Мg, Zn и др. Наименьший объем кристалла, дающий представление об атомной структуре ме­талла в любом объеме, называют элемен­тарной кристаллической ячейкой (рис. 1). Кристаллическая решетка характеризу­ется ее параметрами, например длиной ребра куба для ОЦК и ГЦК, которая со­ставляет для металлов 2,8-6 • 10ˆ(-8) см.

Дефекты в кристаллах. В кристаллах всегда имеются дефекты (несовер­шенства) строения, обусловленные нару­шением правильного расположения атомов кристаллической решетки..

Дефекты в кристаллах:

а — вакансия, б — внедренный атом, в — краевая линейная дислокация, г — непра­вильное расположение атомов на границе зерен 1 и 2

Дефекты кристаллического строения подразделяют по геометрическим признакам на точечные, линейные и поверхностные. Атомы совершают колебательные движения возле узлов решетки, а с повышением температуры амплитуда этих колебаний увеличива­ется. Большинство атомов данной кристаллической решетки имеют одинаковую (среднюю) энергию и колеблются при данной темпера­туре с одинаковой амплитудой. Однако отдельные атомы обладают энергией значительно большей средней энергии и перемещаются из одного места в другое. Наиболее легко перемещаются атомы поверх­ностного слоя, выходя на поверхность. Место, где находился такой атом, называется вакансией (рис. 2, а). На это место через некоторое время перемещается один из атомов соседнего слоя и т. д. Таким об­разом вакансия перемещается в глубь кристалла. С повышением тем­пературы количество вакансий увеличивается и они чаще перемеща­ются из одного узла в другой. В диффузионных процессах, протека­ющих в металлах, вакансии играют определяющую роль. К точечным дефектам относят также атом, внедренный в междоузлие кристал­лической решетки (рис. 2, б), и замешенный атом, когда место атома одного металла замещается в кристаллической решетке другим, чуже­родным атомом. Точечные дефекты вызывают местное искажение кристаллической решетки.

Линейные дефекты являются другим важнейшим видом несовер­шенства кристаллической решетки, когда в результате сдвига на одно межатомное расстояние одной части решетки относительно другой вдоль какой-либо плоскости число рядов атомов в верхней части решетки на один больше, чем в нижней. В данном случае в верхней части решетки появилась как бы лишняя атомная плоскость (экстра-плоскость). Край экстраплоскости, перпендикулярный направлению сдвига, называется краевой или линейной дислокацией (рис. 2, в), длина которой может дос­тигать многих тысяч межатомных расстояний. Ширина дислокации мала и составляет несколько атомных расстояний.

Кристаллическая решетка в зоне дислокации упруго искажена, по­скольку атомы в этой зоне смещены относительно их равновесного со­стояния. Для дислокации характерна их легкая подвижность. Это объяс­няется тем, что атомы, образующие дислокацию, стремятся перемес­титься в равновесное состояние. Дислокации образуются в процессе кри­сталлизации металлов (см. гл. 1, 2), а также при пластической деформа­ции, термической обработке и других процессах.

Поверхностные дефекты представляют собой границы раздела между отдельными кристаллами (рис. 2, г ).На границе раздела атомы располо­жены менее правильно, чем в его объеме. Кроме того, по границам раздела скапливаются дислокации и вакансии, а также концентрируются при­меси, что еще больше нарушает порядок расположения атомов. При этом сами кристаллы разориентированы, т. е. могут быть повернуты относи­тельно друг друга на десятки градусов. Прочность металла может либо увеличиваться в следствии искажений кристаллической решетки вблизи границ, либо уменьшаться из-за наличия примесей и концентрации дефектов. Дефекты в кристаллах существенно влияют на свойства ме­таллов.

Анизотропия кристаллов. Неодинаковость физических свойств среды в разных направлениях называют анизотропией. Анизотропия кристал­лов обусловлена различием плотности упаковки атомов в решетке в различных направлениях. Все кристаллы анизотропны, аморфные тела (стекло, смола) изотропны, т. е. имеют одинаковую плотность атомов в различных направлениях.

Анизотропия свойств важна при использовании монокристаллов— одиночных кристаллов, частицы которых расположены единообразно по всему их объему. Монокристаллы имеют правильную кристаллическую огранку (в форме естественных многогранников), анизотропны по ме­ханическим, электрическим и другим физическим свойствам. Так, для монокристалла меди предел прочности δв изменяется от 120 до 360 МПа в зависимости от направления приложения нагрузки.

Металлы и сплавы, применяемые в технике, обычно имеют поликри­сталлическую структуру, т. е. состоят из множества мелких и различно ориентированных кристаллов, не имеющих правильной кристалличес­кой огранки и называемых кристаллитами (или зернами). В каждом зер­не поликристалла наблюдается анизотропия. Однако вследствии разнообразной, беспорядочной ориентировки кристаллографических плоскостей в различных зернах поликристалл может иметь одинаковые свойства по разным направлениям и не обнаруживать анизотропию (когда размеры зерен значительно меньше размеров поликристалла и количество их весьма велико). Это обстоятельство во многих случаях позволяет рассматривать поликристаллическое тело как подобное изо­тропному, несмотря на анизотропию свойств отдельных составляющих его зерен.

2. КРИСТАЛЛИЗАЦИЯ

Переход из жидкого состояния в твердое (кристаллическое) называют кристаллизацией. Процессы кристаллизации зависят от температуры и протекают во времени, поэтому кривые охлаждения строятся в коорди­натах температура - время (рис. 3). Теоретический, т.е. идеальный, про­цесс кристаллизации металла без переохлаждения протекает при темпе­ратуре Тs (рис. 3). При достижении идеальной температуры затвердева­ния Тs падение температуры прекращается. Это объясняется тем, что пе­регруппировка атомов при формировании кристаллической решетки идет с выделением тепла (выделяется скрытая теплота кристаллизации). Каж­дый чистый металл (не сплав) кристаллизуется при строго индивидуаль­ной постоянной температуре. По окончании затвердевания металла температура его снова понижается.

Практически кристаллизация протекает при более низкой температу­ре, т.е. при переохлаждении металла до температур Тn, Тn1, Тn2, (напри­мер, кривые 1,2). Степень переохлаждения (ΔТ=Тs-Тn) зависит от при­роды и чистоты металла и скорости охлаждения. Чем чище жидкий ме­талл, тем он более склонен к переохлаждению. При увеличении скоро­сти охлаждения степень переохлаждения возрастает, а зерна металла ста­новятся мельче, что улучшает его качество. Для большинства металлов степень переохлаждения при кристаллизации в производственных усло­виях составляет от 10 до 30°С. При больших скоростях охлаждения она может достигать сотен градусов.

 

 

Кривые кристаллизации металла при охлаждении с разной скоростью

 

 

Процесс кристализации состоит из двух стадий: зарождения кристаллов (зародышей или центров кристаллиза­ции) и роста кристаллов из этих цент­ров. При переохлаждении сплава ниже Тп на многих участках жидкого ме­талла (рис. 4, а, б) образуются способ­ные к росту кристаллические зароды­ши. Сначала образовавшиеся крис­таллы  растут свободно и имеют более или менее правильную геометричес­кую форму (рис. 4, в, г, д). Затем при соприкосновении растущих кристалов их правильная форма нарушается, так как в этих участках рост граней прекращается.

Последовательные этапы процесса кристаллизации металла

Рост кристалла про­должается только в тех направлениях, где есть свободный доступ жидко­го металла. В результате кристаллы, имевшие сначала геометрически пра­вильную форму, после затвердевания получают неправильную форму, их называют кристаллитами или зернами (рис. 4, е).

Величина зерен зависит от числа центров кристаллизации и скорости роста кристаллов. Чем больше центров кристаллизации, тем мельче зер­но металла.

Величина зерен, образующихся при кристаллизации, зависит не толь­ко от количества самопроизвольно зарождающихся центров кристалли­зации, но также и от количества нерастворимых примесей, всегда имею­щихся в жидком металле. Такие нерастворимые примеси являются гото­выми центрами кристаллизации. Ими являются оксиды (например, Аl2O3,), нитриды, сульфиды и другие соединения. Центрами кристалли­зации в данном металле или сплаве могут быть только такие твердые частицы, которые соизмеримы с размерами атомов основного металла. Кристаллическая решетка таких твердых частиц должна быть близка по своему строению и параметрам решетке кристаллизующегося металла. Чем больше таких частичек, тем мельче будут зерна закристаллизовав­шегося металла.

На образование центров кристаллизации влияет и скорость охлажде­ния. Чем выше скорость охлаждения, тем больше возникает центров кри­сталлизации и, следовательно, мельче зерно металла Схема дендритного роста крис­талла

Информация о работе Конструкционные материалы