Автор работы: Пользователь скрыл имя, 03 Марта 2013 в 08:52, контрольная работа
По своим физическим свойствам и молекулярной структуре твердые тела разделяются на два класса - аморфные и кристаллические. Отличия кристаллического и аморфного строения заключаются в их свойствах.
В кристаллических телах частицы располагаются в строгом порядке (фиксированное положение частиц), образуя пространственные периодически повторяющиеся структуры во всем объеме тела. Расстояние между двумя соседними атомами в твердом теле остается неизменным.
1. В ЧЕМ СОСТОИТ ОТЛИЧИЕ КРИСТАЛЛИЧЕСКОГО И АМОРФНОГО СТРОЕНИЯ? 3
2. КАКИЕ СВОЙСТВА ОТНОСЯТСЯ К ТЕПЛОФИЗИЧЕСКИМ? СРАВНИТЕ ТЕПЛОЕМКОСТЬ ВОДЫ, ДРЕВЕСИНЫ, ГРАНИТА. 5
3. ЧТО НАЗЫВАЮТ КОРРОЗИОННОЙ СТОЙКОСТЬЮ МАТЕРИАЛОВ? КАКИЕ СУЩЕСТВУЮТ СПОСОБЫ ПОВЫШЕНИЯ КОРРОЗИОННОЙ СТОЙКОСТИ? 8
4. МАРКА СТАЛИ 9ХС 11
5. ЭЛЕКТРОТЕХНИЧЕСКИЕ МАТЕРИАЛЫ. ОСОБЕННОСТИ ПОЛУЧЕНИЯ, СВОЙСТВА И ПРИМЕНЕНИЕ СИЛИКАТНОГО СТЕКЛА 13
СПИСОК ЛИТЕРАТУРЫ 24
Металлопродукцию из стали 9ХС изготавливают термически обработанной (после отжига или высокого отпуска). Твердость материала по Бринеллю после отжига: НВ=241 МПа.
Плотность 7830 кг/м3.
Инструментальная сталь 9ХС не применяется для сварных конструкций, однако применение контактно-точечной сварки допустимо.
Флокеночувствительность: не чувствительна, что означает, что сталь 9ХС не склонна к внутренним трещинам в стальных поковках и прокатной продукции (иногда – в слитках или отливках), резко снижающие механические свойства стали.
Электротехнические материалы
1. Классификация электротехнических материалов.
Все тела, в зависимости от их электрических свойств, могут быть отнесены к группе диэлектриков, проводников или полупроводников. Различие между проводниками, полупроводниками и диэлектриками наиболее наглядно можно показать с помощью энергетических диаграмм зонной теории твердых тел [3].
Энергетические уровни.
Схема расположения.
Исследование спектров излучения
различных веществ в
При конденсации
газообразного вещества в жидкость,
а затем образовании
Рис. 3.2. показывает различие в энергетических диаграммах (при температуре 0° К) металлических проводников, полупроводников и диэлектриков. Диэлектриком будет такое тело, у которого запрещенная зона настолько велика, что электронной электропроводности в обычных условиях не наблюдается. Полупроводниками будут вещества с более узкой запрещенной зоной, которая может быть преодолена за счет внешних энергетических воздействий. У металлических проводников заполненная электронами зона вплотную прилегает к зоне свободных энергетических уровней или даже перекрывается ею. Вследствие этого электроны в металле свободны, так как они могут переходить с уровней заполненной зоны на не занятые уровни свободной зоны под влиянием слабых напряженностей приложенного к проводнику электрического поля.
При отсутствии в полупроводнике свободных электронов (Т = 0° К) приложенная к нему разность электрических потенциалов не вызовет тока. Если извне будет подведена энергия, достаточная для переброса электронов через запрещенную зону, то, став свободными, электроны смогут перемещаться и под действием электрического поля, создавая электронную электропроводность полупроводника.
Энергетическое
отличие металлических
Рис. 3.2.
В заполненной зоне, откуда ушел электрон, образовалась «электронная дырка», а потому в полупроводнике начнется другое «эстафетное» движение электронов, заполняющих образовавшуюся дырку, причем под воздействием электрического поля дырка будет двигаться в направлении поля как эквивалентный положительный заряд.
Процесс перехода электронов в свободное состояние сопровождается и обратным явлением, т. е. возвратом электронов в нормальное состояние. В результате в веществе наступает равновесие, т. е. количество электронов, переходящих в свободную зону, становится равным количеству электронов, возвращающихся обратно в нормальное состояние.
С повышением температуры число свободных электронов в полупроводнике возрастает, а с понижением температуры до абсолютного нуля — убывает вплоть до нуля.
Таким образом, вещество, представляющее собой диэлектрик при одних температурах, при других, более высоких, может приобрести проводимость; при этом происходит качественное изменение вещества.
Энергию, необходимую для перевода электрона в свободное состояние или для образования дырки, могут доставить не только тепловое движение, но и другие источники энергии, например, поглощенная материалом энергия света, энергия потока электронов и ядерных частиц, энергия электрических и магнитных полей, механическая энергия и т. д.
Увеличение числа свободных электронов или дырок в веществе под воздействием какого-либо вида энергии способствует повышению электропроводности, увеличению тока, появлению электродвижущих сил.
Электрические свойства определяются условиями взаимодействия атомов вещества и не являются непременной особенностью данного атома. Например, углерод в виде алмаза является диэлектриком, а в виде графита он обладает большой проводимостью.
Примеси и связанные с ними дефекты кристаллической решетки также играют большую роль в электрических свойствах твердых тел.
Особенности получения, свойства и применение силикатного стекла | ||||||||||||||||||||||||||||||||||||||||||||
Силикатное стекло - растворы щелочных силикатов натрия и калия - являются представителями обширного класса водорастворимых силикатов и жидких стекол, выпускаемых в промышленных масштабах. | ||||||||||||||||||||||||||||||||||||||||||||
В соответствии с действующей нормативно- Промышленностью нашей страны выпускаются
в основном натриевые жидкие стекла,
в меньших масштабах Натриевые жидкие стекла обычно выпускают в пределах значений силикатного модуля от 2,0 до 3,5 при плотности растворов от 1,3 до 1,6 г/см3 . Калиевые жидкие стекла характеризуются значениями силикатного модуля 2,8-4,0 при плотности 1,25-1,40 г/см3. Жидкое стекло принято характеризовать: по виду щелочного катиона (натриевые, калиевые, литиевые, четвертичного аммония); по массовому или мольному соотношению в стекле SiO2 и M2О (где М- это K , Na, Li или четвертичный аммоний), причем мольное соотношение SiO2/M2O принято называть силикатным модулем жидкого стекла n; по абсолютному содержанию в жидком стекле SiO2 и M2O в масс.%; по сстодержанию примесных оксидов Al2O3 , Fe2O3, CaO , MgO, SO3 и др.; по плотности растворов жидкого стекла (г/см3). Химический состав жидких стекол характеризуют по содержанию кремнозема и других оксидов, независимо от конкретной формы их существования в растворе. В некоторых странах в характеристику жидких стекол включают также значение вязкости в растворе. Практическое использование Второе направление Третья область относится к
применению силикатов щелочных металлов
в качестве химических компонентов
в составе различных веществ.
Это направление Современные области применения жидких стекол в промышленности и строительстве обширны. Они охватывают машиностроение (связующие для литейных формовочных смесей и противопригарных красок), целлюлозно-бумажную промышленность (пропитка бумажной массы, склеивание), производство жароупорных материалов (растворы и бетоны), кислотоупорных материалов, катализаторов, цеолитов, силикагеля, белой сажи, синтетических моющих средств, производство электросварочных материалов (штучных сварочных электродов и керамических флюсов), силикатных лакокрасочных материалов, приготовление инъекционных составов для укрепления грунтов при строительстве и т.д. Область применения: В строительстве и для гидроизоляции, приготовления водостойких, жаростойких и кислотостойких бетонов. В качестве добавки к стройматериалам повышает их долговечность, прочность, огнеупорность, атмосферостойкость. Для пропитки деревянных изделий и тканей с целью придания им большей плотности и огнеустойчивости. В качестве защитного средства при обрезке и ранении деревьев. Для грунтования бетонных, кирпичных, оштукатуренных деревянных поверхностей, гидроизоляции емкостей и бассейнов. Для склеивания изделий из дерева, бумаги, картона, стекла, фарфора, кожи, тканей, а также приклеивания облицовочных плиток и линолеума на любые виды поверхности. Может использоваться как самостоятельный продукт, а также в комбинации с другими материалами. Применяется в качестве моющего, чистящего средства. Используется в мыловаренной, жировой, химической, текстильной и бумажной промышленности. Является экологически чистым антисептиком (препятствует образованию плесени, гнили, грибков). Перед применением перемешать, в качестве рабочего инструмента использовать кисть, валик или щетку. Поверхность, ранее покрытая различного рода загрязнениями, должна быть предварительно очищена, деревянные поверхности зачистить наждачной бумагой. При приклеивании нанести на склеиваемые поверхности и слегка прижать. При добавлении в цементные растворы тщательно перемешать полученную смесь. После работы руки и инструмент промыть водой. •в качестве грунтовки для поверхности стяжки: жидкое стекло и цемент смешать в соотношении 1: 1. •в качестве гидроизоляции для бетонных колодцев: обработать стенки колодца жидким стеклом, затем покрыть раствором жидкого стекла, цемента и песка в соотношении 1: 1: 1. Особое внимание при гидроизоляции следует обратить на места стыков бетонных колец. | ||||||||||||||||||||||||||||||||||||||||||||
•для приготовления водостойкой штукатурки: смешать цемент и песок в соотношении 1: 2,5 и развести полученную смесь 15% раствором жидкого стекла. •для приготовления раствора для кладки и ремонта наружных частей дымовых труб, печей и каминов: смешать цемент и песок в соотношении 1: 3 и развести полученную смесь 10-15% раствором жидкого стекла. •для гидроизоляции стен, полов, перекрытий, подвальных помещений, устройства бассейнов и других гидроизоляционных работ раствор готовится из соотношения: жидкое стекло 1 часть - бетонного раствора 10 частей: литр жидкого стекла на 10 л раствора. •в качестве клея - 200-400 г на 1 м2, •для чистки посуды (кастрюли, сковороды и т.п.), приготовить раствор из соотношения: жидкое стекло - вода 1 к 25, затем прокипятить посуду в этом растворе. •Для склеивания стекла и ремонта аквариумов. Другие применения: пропитка известковых строительных материалов, цементных и бетонных изделий, деревянных изделий для увеличения их прочности. Приготовление замазок для водопроводных труб. Удаление старых лаковых и масляных красок. Изготовление силикатных красок (смесь жидкого стекла с различными красителями). Предотвращение коррозии металлов (жидкое стекло+цементный порошок, затем покраска). Предотвращение образования и удаление накипи. Удаление грязных, масляных и жирных пятен с одежды. Использование жидкого стекла в качестве ускорителя твердения цементов Растворимое жидкое стекло (натриевое) так же как и сода, сильно ускоряет процессы твердения цементов. Растворимое стекло представляет собой коллоидный раствор натриевых силикатов в воде. По своему воздействию на цементные композиции натриевое и калиевые растворимые стекла аналогичны. Химический состав натриевого растворимого стекла может быть выражен формулой: Na2O x nSiO2 + mH2O Из неё видно, что оно (растворимое стекло) не имеет постоянного состава, и соотношение между отдельными составными частями может меняться. Отношение: SiO2: Na2O = M, показывающее, сколько кремнекислоты приходится на единицу окиси натрия, называется силикатным модулем стекла. Величина его обычно колеблется в пределах от 2.2 до 3.5. Чаще всего производится и встречается стекло с модулем 2.6 - 2.8. Количество воды может быть самым неопределенным. В зависимости от этого в коллоидном растворе растворимого стекла меняется его консистенция - "плотность", измеряемая градусами шкалы Боме или показаниями удельного веса. Заводы обычно отпускают растворимое стекло плотностью 40 - 50оBe (плотностью 1.38 - 1.50), и затем на месте работ оно разбавляется водой до нужной концентрации. При добавлении растворимого стекла к воде, идущей на затворение цемента, его сроки схватывания сильно сокращаются (см. Таблица 64-1). Обусловлено это тем, что в результате химической реакции между щелочным силикатом (жидкое стекло) и составными частями цементного клинкера (гидроалюминат кальция) образуются коллоидные гидросиликат кальция и алюминат натрия по уравнению: 3Na2O x SiO2 + 3CaO x Al2O3 x nH2O = 3CaSiO3 x nH2O + 3Na2O x Al2O3 Именно образующийся в составе бетона алюминат натрия и является очень сильным ускорителем его схватывания. Кроме того, проходит еще одна реакция, между жидким стеклом и известью, находящейся в цементе c образованием силиката кальция: Na2O x 2SiO2 + CaO = Na2O x SiO2 + CaSiO3 Силикат кальция очень прочный и плотный материал. Пористый кусок, например, негашеной извести, обработанный раствором жидкого стекла, становится настолько плотным и прочным, что его можно полировать. Отлагаясь в порах твердеющего камня, силикат кальция, придает ему повышенную плотность и водонепроницаемость. Вот эта совокупность свойств - ускорение схватывания бетона от образования алюмината натрия и пониженная проницаемость порового пространства, за счет кольматирующего действия силиката кальция и обусловило очень широкое применение жидкого стекла в качестве добавки для получения водонепроницаемого бетона для аварийных работ - заделка протечек, зачеканка швов и т.д. Влияние добавки растворимого стекла на сроки схватывания цемента.
О характере влияния растворимого стекла на прочность, можно судить из последующей Таблицы: Влияние добавок растворимого стекла на прочность в % от бездобавочного (для цементно-песчаного
|
4. Пейсахов А.М.,
Кучер А.М. Материаловедение и
технология конструкционных
5. Фетисов Г.П., Карпман М.Г., Матюнин В.М. и др. Материаловедение и технология металлов. – М., Высшая школа, 2001. – 638 с.
6. Материаловедение:
учебник для втузов/ Б.Н.Арзамасов,
В.И.Макарова, Г.Г.Мухин. Под общей
ред. Б.Н. Арзамасова и Г.Г.