Автор работы: Пользователь скрыл имя, 20 Декабря 2010 в 14:12, реферат
Наука о металлах развивается широким фронтом во вновь созданных научных центрах с применением электронных микроскопов и другой современной аппаратуры, с использованием достижений рентгенографии и физики твердого тела. Все это позволяет более глубоко изучить строение металлов и сплавов и находить новые пути повышения механических и физико-химических свойств. Создаются сверхтвердые сплавы, сплавы с заранее заданными свойствами, многослойные композиции с широким спектром свойств и многие другие металлические, алмазные и керамико-металлические материалы. [1, стр. 58]
ВВЕДЕНИЕ 2
КЛАССИФИКАЦИЯ. 4
Сталь углеродистая обыкновенного качества. 4
Сталь углеродистая качественная конструкционная. 6
Сталь легированная. 7
СТРОЕНИЕ МЕТАЛЛОВ 9
Структура. 11
Диаграмма состояния железоуглеродистых сплавов. 11
СВОЙСТВА МЕТАЛЛОВ 14
Химические свойства. 14
Физические свойства. 15
ПРИМЕНЕНИЕ МЕТАЛЛОВ В СТРОИТЕЛЬСТВЕ. 19
Сталь. 19
Чугуны. 20
Цветные металлы и сплавы. 21
ЛИТЕРАТУРА 24
Графит – мягкая и хрупкая составляющая чугуна, состоящая из разновидностей углерода. Встречается в серых и ковких чугунах.
На диаграмме состояния железоуглеродистых сплавов (рис 5) на оси ординат отложена температура, на оси абсцисс – содержание в сплавах углерода до 6,67 % т.е. до такого количества, при котором образуется химическое соединение Fe3C – цементит. Пунктирными линиями нанесена диаграмма состояния для системы железо – графит, так как возможен распад цементита Fe3С.
Рассматриваемую диаграмму правильнее считать не железоуглеродистой, а железоцементитной, так как свободного углерода в сплавах не содержится. Но так как содержание углерода пропорционально содержанию цементита, то практически удобнее все изменения структуры сплавов связывать с различным содержанием углерода.
Все линии на диаграмме соответствуют критическим точкам, т. е. тем температурам, при которых происходят структурные изменения в сплавах. Критические точки для стали впервые открыл русский ученый-металлург Д.К. Чернов.
Линия ACD – линия начала кристаллизации сплава (линия ликвидуса), линия AECF – линия конца кристаллизации сплава (линия солидуса). Только чистые металлы и эвтектика плавятся и затвердевают при постоянной температуре. Затвердевание всех остальных сплавов происходит постепенно, причем из жидкого сплава сначала выделяется избыточный по отношению к составу эвтектики компонент. Область AESG на диаграмме соответствует аустениту. Линия GS – начало выделения феррита, а линия SE – вторичного цементита. Линия PSK соответствует окончательному распаду аустенита и выделению перлита. В области ниже линии PSK никаких изменений структуры не происходит.
В зависимости от содержания углерода железоуглеродистые сплавы получают следующие названия:
При содержании углерода <0,83 % – доэвтектоидные стали
» » » 0,83% – эвтектоидные стали
» » » 0,83...2% – заэвтектоидные стали
» » » 2,0...4,3% – доэвтектические чугуны
» » » 4,3.. .6,67% – заэвтектические чугуны
С
увеличением содержания углерода в
железоуглеродистых сплавах меняется
и структура, увеличивается содержание
цементита и уменьшается количество феррита.
Чем больше углерода в сплавах, тем выше
твердость, прочность, но ниже их пластические
свойства. Механические свойства сплавов
зависят также от формы и размера частиц
структурных составляющих. Твердость
и прочность стали тем выше, чем тоньше
и мельче частицы феррита и цементита.
[2, стр. 302-308]
СВОЙСТВА
МЕТАЛЛОВ
Химические свойства.
В
соответствии с местом, занимаемым
в периодической системе
Электронная структура атомов некоторых d-элементов имеет ту особенность, что один из электронов внешнего уровня переходит на d-подуровень. Это происходит при достройке этого подуровня до 5 или 10 электронов. Поэтому электронная структура валентных подуровней атомов d-элементов, находящихся в одной подгруппе, не всегда одинакова. Например, Cr и Мо (подгруппа VI б) имеют внешнюю электронную структуру соответственно 3d54s1 и 4d55s1, тогда как у W она 5d46s2. В атоме Pd (подгруппа VIII 6) два внешних электрона «перешли» на соседний валентный подуровень, и для атома Pd наблюдается d10 вместо ожидаемого d8s2.
Металлам присущи многие общие химические свойства, обусловленные слабой связью валентных электронов с ядром атома: образование положительно заряженных ионов (катионов), проявление положительной валентности (окислительного числа), образование основных окислов и гидроокисей, замещение водорода в кислотах и т.д. Металлические свойства элементов можно сравнить, сопоставляя их электроотрицательность [способность атомов в молекулах (в ковалентной связи) притягивать электроны, выражена в условных единицах]; элементу присущи свойства металла тем больше, чем ниже его электроотрицательность (чем сильнее выражен электроположительный характер).
Если
расположить металлы в
Металлы от Li no Na легко реагируют с О2 на холоду; последующие члены ряда соединяются с О2 только при нагревании, a Ir, Pt, Аи в прямое взаимодействие с О2 не вступают. Окислы металлов от Li no Al и от La no Zn трудно восстановимы; по мере продвижения к концу ряда восстановимость окислов увеличивается, а окислы последних его членов разлагаются на металлы и О2 уже при слабом нагревании. О прочности соединений металлов с кислородом (и др. неметаллами) можно судить и по разности их электроотрицательностей: чем она больше, тем прочнее соединение [3, стр. 133-134].
Физические свойства.
Большинство металлов кристаллизуется в относительно простых структурах – кубических и гексагональных ЛГУ, соответствующих наиболее плотной упаковке атомов. Лишь небольшое число металлов имеет более сложные типы кристаллических решёток. Многие металлы в зависимости от внешних условий (температуры, давления) могут существовать в виде двух или более кристаллических модификаций.
Электрические свойства. Удельная электропроводность металлов при комнатной температуре σ~10-6–10-4 ом-1 см-1, тогда как у диэлектриков, например, у серы, σ~10-17 ом-1 см-1. Промежуточные значения σ соответствуют полупроводникам. Характерным свойством металлов как проводников электрического тока является линейная зависимость между плотностью тока и напряжённостью приложенного электрического поля. Носителями тока в металлах являются электроны проводимости, обладающие высокой подвижностью. Согласно квантово-механическим представлениям, в идеальном кристалле электроны проводимости (при полном отсутствии тепловых колебаний кристаллической решётки) вообще не встречают сопротивления на своём пути. Существование у реальных металлов электросопротивления является результатом нарушения периодичности кристаллической решётки. Эти нарушения могут быть связаны как с тепловым движением атомов, так и с наличием примесных атомов, вакансий, дислокаций и др. дефектов в кристаллах. На тепловых колебаниях и дефектах (а также друг на друге) происходит рассеяние электронов.
При
нагревании металлов до высоких температур
наблюдается «испарение»
Тепловые свойства. Теплоёмкость металлов обусловлена как ионным остовом (решёточная теплоёмкость Ср), так и электронным газом (электронная теплоёмкость Сэ). Хотя концентрация электронов проводимости в металлах очень велика и не зависит от температуры, электронная теплоёмкость мала и у большинства металлов наблюдается только при температурах в несколько градусов кельвина. Теплопроводность металлов осуществляется главным образом электронами проводимости.
Магнитные свойства. Переходные металлы с недостроенными f- и d-электронными оболочками являются парамагнетиками. Некоторые из них при определённых температурах переходят в магнитоупорядоченное состояние. Магнитное упорядочение существенно влияет на все свойства металлов, в частности на электрические свойства: в электросопротивление вносит вклад рассеяние электронов на колебаниях магнитных моментов. Гальваномагнитные явления при этом также приобретают специфические черты.
Магнитные свойства остальных металлов определяются электронами проводимости, которые вносят вклад в диамагнитную и парамагнитную восприимчивости металлов, и диамагнитной восприимчивостью ионного состава. Магнитная восприимчивость X большинства металлов относительно мала (X ~ 10-6) и слабо зависит от температуры.
Механические свойства. Многие металлы обладают комплексом механических свойств, обеспечивающим их широкое применение в технике, в частности в качестве конструкционных материалов. Это, в первую очередь, сочетание высокой пластичности со значит, прочностью и сопротивлением деформации, причём соотношение этих свойств может регулироваться в большом диапазоне с помощью механических и термических обработки металлов, а также получением сплавов различного состава.
Исходной характеристикой механических свойств металлов является модуль упру гости G, определяющий сопротивление кристаллической решётки упругому деформированию и непосредственно отражающий величину, сил связи в кристалле. В монокристаллах эта величина, как и остальные механические характеристики, анизотропна и коррелирует с температурой плавления металла (например, средний модуль сдвига G изменяется от 0,18-1011 эрг/см3 для легко плавкого Na до 27•1011 эрг/см3 для тугоплавкого Re).
Сопротивление разрушению или пластической деформации идеального кристалла примерно 10-1 G. Но в реальных кристаллах эти характеристики, как и все механические свойства, определяются наличием дефектов, в первую очередь дислокация. Перемещение дислокаций по плотноупакованным плоскостям приводит к элементарному акту скольжения – основному механизму пластической деформации металла. Важнейшая особенность металлов – малое сопротивление скольжению дислокации в бездефектном кристалле. Это сопротивление особенно мало в кристаллах с чисто металлической связью, которые обычно имеют плотноупакованные структуры. В металла с ковалентной компонентой межатомной связью, имеющих объемно-центрированную решётку, сопротивление скольжению несколько больше, однако всё же мало по сравнению с чисто ковалентными кристаллами. Сопротивление пластической деформации, по крайней мере в металлах с гранецентрированной кубической и гексагональной решётками, связано с взаимодействием движущихся дислокаций с др. дефектами в кристаллах, с др. дислокациями, примесными атомами, внутренними поверхностями раздела. Взаимодействие дефектов определяется искажениями решётки вблизи них и пропорционально G. Для отожжённых монокристаллов начальное сопротивление пластической деформации (предел текучести) обычно ~ 10-3–10-4 G. Для монокристаллов металлов характерно наличие трёх стадий деформационного упрочнения. На 1-й стадии значительная часть дислокаций выходит на поверхность и коэффициент упрочнения мал; на 2-й стадии дислокации накапливаются в кристалле, их распределение становится существенно неоднородным. На 3-й стадии плотность дислокации, G и коэффициент упрочнения уменьшаются вследствие аннигиляции дислокаций, выдавливаемых из их плоскостей скольжения. Значение этой стадии больше для металлов с объемно-центрированной решёткой.
При Т > 0,5 Тпл в пластической деформации начинают играть существенную роль точечные дефекты, в первую очередь вакансии, которые, оседая на дислокациях, приводят к их выходу из плоскостей скольжения. Если этот процесс достаточно интенсивен, то деформация не сопровождается упрочнением: металл течёт с постоянной скоростью при неизменной нагрузке (ползучесть). Протекание процессов релаксации напряжений и постоянная разрядка дислокационной структуры обеспечивают высокую пластичность металлов при их горячей обработке, что позволяет придавать изделиям из металлов разнообразную форму. Отжиг сильно деформированных монокристаллов металлов нередко приводит к образованию поликристаллов с малой плотностью дислокаций внутри зёрен (рекристаллизация).
Достижимые степени деформации металлов ограничены процессом разрушения. По мере роста плотности дислокаций при холодной деформации растёт неравномерность их распределения, приводящая к концентрации напряжений в местах сгущения дислокаций и зарождению здесь очагов разрушения – трещин. В реальных кристаллах такие концентрации напряжений имеются и в исходном недеформированном состоянии (скопление примесей, частицы др. фаз и т.п.). Но вследствие пластичности металла деформация вблизи опасных мест снимает напряжения и предотвращает разрушение. Однако если сопротивление движению дислокаций растёт, то релаксационная способность материала падает, что под нагрузкой приводит к развитию трещин (хрупкое разрушение). Это особенно проявляется в металлах с объёмно-центрированной решёткой, в которых подвижность дислокаций резко уменьшается при понижении температуры (из-за взаимодействия с примесями и уменьшения числа кристаллографических возможных плоскостей скольжения). Предотвращение хладноломкости – одна из важнейших технических проблем разработки конструкционных металлических материалов. Другая актуальная проблема – увеличение прочности и сопротивления деформации при высоких температурах. Зародышами разрушения в этих условиях служат микропоры, образующиеся в результате скопления вакансий. Эффективный способ повышения высокотемпературной прочности – уменьшение диффузионной подвижности точечных дефектов, в частности легированием.
Применяемые
в технике конструкционные