Автор работы: Пользователь скрыл имя, 28 Февраля 2013 в 17:35, контрольная работа
Характерные свойства металлов можно понять, исходя из их внутреннего строения. Все они имеют слабую связь электронов внешнего энергетического уровня (другими словами, валентных электронов) с ядром. Благодаря этому созданная разность потенциалов в проводнике приводит к лавинообразному движению электронов (называемых электронами проводимости) в кристаллической решётке. Совокупность таких электронов часто называют электронным газом. Вклад в теплопроводность, помимо электронов, дают фононы (колебания решётки).
Введение 4
1 Происхождение слова «металл» 5
1.1 Нахождение в природе 5
1.2 Добыча 6
2. Физические свойства металлов 6
3. Химические свойства металлов 11
3.1 Реакции с простыми веществами 12
3.2. Взаимодействие кислот с металлами 13
4. Механические свойства металлов 14
5. Характерные свойства металлов 18
5.1. Кристаллическая структура 18
5.2. Скольжение и дислокации 20
5.3. Температурные эффекты 21
5.4. Магнитные свойства 22
5.5. Понятие об изотропии и анизотропии 22
Заключение 24
Список используемой литературы 25
Упругость — способность тела восстанавливать свою первоначальную форму после прекращения действия сил, вызвавших это изменение. Примером упругого тела может служить стальная пружина, которая после прекращения сил воздействия восстанавливает свою прежнюю форму.
Пластичность — способность материала изменять свою форму под воздействием сил не разрушаясь и не восстанавливать прежней формы после прекращения действия сил. Примером пластичного металла может служить свинец. Это качество по своей сущности противоположно упругости.
Большинство металлов пластичны, то есть металлическую проволоку можно согнуть, и она не сломается. Это происходит из-за смещения слоёв атомов металлов без разрыва связи между ними. Самыми пластичными являются золото, серебро и медь. Из золота можно изготовить фольгу толщиной 0,003 мм, которую используют для золочения изделий. Однако не все металлы пластичны. Проволока из цинка или олова хрустит при сгибании; марганец и висмут при деформации вообще почти не сгибаются, а сразу ломаются. Пластичность зависит и от чистоты металла; так, очень чистый хром весьма пластичен, но, загрязнённый даже незначительными примесями, становится хрупким и более твёрдым.
Вязкость — способность материала выдерживать механические воздействия (удары) не разрушаясь. Очень вязка, например, малоуглеродистая сталь, употребляемая для неответственных деталей.
Хрупкость — качество, противоположное вязкости, способность тела легко разрушаться при механических воздействиях (ударах). Примером хрупкого металла является чугун.
Все металлы хорошо проводят электрический ток; это обусловлено наличием в их кристаллических решётках подвижных электронов, перемещающихся под действием электрического поля. Серебро, медь и алюминий имеют наибольшую электропроводность; по этой причине последние два металла чаще всего используют в качестве материала для проводов. Очень высокую электропроводность имеет также натрий, в экспериментальной аппаратуре известны попытки применения натриевых токопроводов в форме тонкостенных труб из нержавеющей стали, заполненных натрием. Благодаря малому удельному весу натрия, при равном сопротивлении натриевые «провода» получаются значительно легче медных и даже несколько легче алюминиевых.
Высокая теплопроводность металлов также зависит от подвижности свободных электронов. Поэтому ряд теплопроводностей похож на ряд электропроводностей и лучшим проводником тепла, как и электричества, является серебро. Натрий также находит применение как хороший проводник тепла; широко известно, например, применение натрия в клапанах автомобильных двигателей для улучшения их охлаждения.
Гладкая поверхность металлов отражает большой процент света — это явление называется металлическим блеском. Однако в порошкообразном состоянии большинство металлов теряют свой блеск; алюминий и магний, тем не менее, сохраняют свой блеск и в порошке. Наиболее хорошо отражают свет алюминий, серебро и палладий — из этих металлов изготовляют зеркала. Для изготовления зеркал иногда применяется и родий, несмотря на его исключительно высокую цену: благодаря значительно большей, чем у серебра или даже палладия, твёрдости и химической стойкости, родиевый слой может быть значительно тоньше, чем серебряный.
Цвет у большинства металлов примерно одинаковый — светло-серый с голубоватым оттенком. Золото, медь и цезий соответственно жёлтого, красного и светло-жёлтого цвета.
Основные физические свойства некоторых чистых элементарных металлов | ||||||||||
Металл |
Хим. |
Атомный |
Плотн. |
Тплав. |
Уд. теплоемк. |
Уд. теплопр. |
Тепл. коэф лин. |
Число |
Уд. сопрот. мкОм*м |
Магнитные свойства |
Алюминий |
Al |
13 |
2,70 |
660 |
923 |
218,0 |
21,0 |
25 |
0,026 |
Парамагне тик |
Вольфрам |
W |
74 |
19,30 |
3400 |
142 |
167,0 |
4,4 |
262 |
0,055 |
Парамагне тик |
Железо |
Fe |
26 |
7,87 |
1540 |
453 |
73,3 |
10,7 |
50 |
0,097 |
Ферромагне тик |
Золото |
Au |
79 |
19,30 |
1063 |
134 |
312,0 |
14,0 |
18 |
0,0225 |
Диамагнетик |
Иридий |
Ir |
77 |
22,40 |
2410 |
130 |
146,0 |
6,5 |
170 |
0,054 |
Парамагне тик |
Кадмий |
Cd |
48 |
8,65 |
320,9 |
231 |
92,8 |
29,0 |
21 |
0,074 |
Диамагнетик |
Кобальт |
Co |
27 |
8,85 |
1500 |
445 |
69,5 |
13,5 |
102 |
0,064 |
Ферромагне тик |
Медь |
Cu |
29 |
8,92 |
1083 |
386 |
406,0 |
16,6 |
35 |
0,017 |
Диамагнетик |
Молибден |
Mo |
42 |
10,20 |
2620 |
272 |
150,0 |
5,3 |
153 |
0,05 |
Парамагне тик |
Никель |
Ni |
28 |
8,96 |
1453 |
440 |
75,5 |
13,2 |
68 |
0,068 |
Ферромагне тик |
Олово |
Sn |
50 |
7,29 |
231,9 |
226 |
63,1 |
23,0 |
5,2 |
0,113 |
Парамагне тик |
Палладий |
Pd |
46 |
12,02 |
1552 |
243 |
70,7 |
9,5 |
46 |
0,108 |
Парамагне тик |
Платина |
Pt |
78 |
21,45 |
1773 |
134 |
71,1 |
9,5 |
40 |
0,098 |
Парамагне тик |
Родий |
Rh |
45 |
12,48 |
1970 |
247 |
88,0 |
8,5 |
102 |
0,043 |
Парамагне тик |
Ртуть |
Hg |
80 |
13,50 |
- 39 |
138 |
7,9 |
182,0 |
- |
0,958 |
Диамагнетик |
Свинец |
Pb |
82 |
11,34 |
327 |
130 |
35,0 |
28,3 |
3,9 |
0,19 |
Диамагнетик |
Серебро |
Ag |
47 |
10,49 |
960,5 |
235 |
453,0 |
18,6 |
25 |
0,015 |
Диамагнетик |
Титан |
Ti |
22 |
4,52 |
1670 |
550 |
21,9 |
8,1 |
73 |
0,47 |
Парамагне тик |
Хром |
Cr |
24 |
7,19 |
1900 |
462 |
88,6 |
6,2 |
114 |
0,13 |
Антиферро магн. |
Цинк |
Zn |
30 |
7,14 |
419,5 |
336 |
113,0 |
30,0 |
42 |
0,059 |
Диамагнетик |
3. Химические свойства металлов
На внешнем электронном уровне у большинства металлов небольшое количество электронов (1-3), поэтому они в большинстве реакций выступают как восстановители (то есть «отдают» свои электроны).
Строение атомов металлов определяет не только характерные физические свойства простых веществ – металлов, но и общие их химические свойства.
При большом многообразии все химические реакции металлов относятся к окислительно-восстановительным и могут быть только двух типов: соединения и замещения. Металлы способны при химических реакциях отдавать электроны, то есть быть восстановителями, проявлять в образовавшихся соединениях только положительную степень окисления.
В общем виде это можно выразить схемой:
Ме0 – ne → Me+n,
где Ме – металл – простое вещество,
а Ме0+n – металл химический элемент в соединении.
Металлы способны отдавать свои валентные электроны атомам неметаллов, ионам водорода, ионам других металлов, а поэтому будут реагировать с неметаллами – простыми веществами, водой, кислотами, солями. Однако восстановительная способность металлов различна. Состав продуктов реакции металлов с различными веществами зависит и от окислительной способности веществ и условий, при которых протекает реакция.
При высоких температурах большинство металлов сгорает в кислороде:
2Mg + O2 = 2MgO
Не окисляются в этих условиях только золото, серебро, платина и некоторые другие металлы.
С галогенами многие металлы реагируют без нагревания. Например, порошок алюминия при смешивании с бромом загорается:
2Al + 3Br2 = 2AlBr3
При взаимодействии металлов с водой в некоторых случаях образуются гидроксиды. Очень активно при обычных условиях взаимодействуют с водой щелочные металлы, а также кальций, стронций, барий. Схема этой реакции в общем виде выглядит так:
Ме + HOH → Me(OH)n + H2↑
Другие металлы реагируют с водой при нагревании: магний при её кипении, железо в парах воды при красном кипении. В этих случаях получаются оксиды металлов.
Если металл реагирует с кислотой, то он входит в состав образующейся соли. Когда металл взаимодействует с растворами кислоты, он может окисляться ионами водорода, имеющимися в этом растворе. Сокращённое ионное уравнение в общем виде можно записать так:
Me + nH+ → Men+ + H2↑
Более сильными окислительными свойствами, чем ионы водорода, обладают анионы таких кислородосодержащих кислот, как например, концентрированная серная и азотная. Поэтому с этими кислотами реагируют те металлы, которые не способны окисляться ионами водорода, например, медь и серебро.
При взаимодействии металлов с солями происходит реакция замещения: электроны от атомов замещающего – более активного металла переходят к ионам замещаемого – менее активного металла. То сеть происходит замещение металла металлом в солях. Данные реакции не обратимы: если металл А вытесняет металл В из раствора солей, то металл В не будет вытеснять металл А из раствора солей.
В порядке убывания химической
активности, проявляемой в реакциях
вытеснения металлов друг друга из
водных растворов их солей, металлы
располагаются в
Li → Rb → K → Ba → Sr → Ca → Na→ Mg → Al → Mn → Zn → Cr → Fe → Cd→ Co → Ni → Sn → Pb → H → Sb → Bi → Cu → Hg → Ag → Pd → Pt → Au
Металлы, расположенные в этом ряду левее, более активны и способны вытеснять следующие за ними металлы из растворов солей.
В электрохимический ряд напряжений металлов включён водород, как единственный неметалл, разделяющий с металлами общее свойство — образовывать положительно заряженные ионы. Поэтому водород замещает некоторые металлы в их солях и сам может замещаться многими металлами в кислотах, например:
Zn + 2 HCl = ZnCl2 + H2↑ + Q
Металлы, стоящие в электрохимическом ряду напряжений до водорода, вытесняют его из растворов многих кислот (соляной, серной и др.), а все следующие за ним, например, медь не вытесняют.
3.1 Реакции с простыми веществами
С кислородом реагируют все металлы, кроме золота, платины. Реакция с серебром происходит при высоких температурах, но оксид серебра(II) практически не образуется, так как он термически неустойчив. В зависимости от металла на выходе могут оказаться оксиды, пероксиды, надпероксиды:
Чтобы получить из пероксида оксид, пероксид восстанавливают металлом:
Со средними и малоактивными металлами реакция происходит при нагревании:
С азотом реагируют только
самые активные металлы, при комнатной
температуре взаимодействует
При нагревании:
С серой реагируют все металлы, кроме золота и платины:
Железо взаимодействует с серой при нагревании, образуя сульфид:
С водородом реагируют только самые активные металлы, то есть металлы IA и IIA групп кроме Be. Реакции осуществляются при нагревании, при этом образуются гидриды. В реакциях металл выступает как восстановитель, степень окисления водорода −1:
С углеродом реагируют только наиболее активные металлы. При этом образуются ацетилениды или метаниды. Ацетилениды при взаимодействии с водой дают ацетилен, метаниды — метан.
3.2. Взаимодействие кислот с металлами
С кислотами металлы реагируют по-разному. Металлы, стоящие в электрохимическом ряду активности металлов (ЭРАМ) до водорода, взаимодействуют практически со всеми кислотами.
Взаимодействие неокисляющих кислот с металлами, стоящими в электрическом ряду активности металлов до водорода
Происходит реакция замещения,
которая также является окислительно-
Взаимодействие серной кислоты H2SO4 с металлами
Окисляющие кислоты могут
взаимодействовать и с
Очень разбавленная кислота реагирует с металлом по классической схеме:
При увеличении концентрации кислоты образуются различные продукты:
Реакции для азотной кислоты (HNO3)
Продукты взаимодействия железа с HNO3 разной концентрации
При взаимодействии с активными металлами вариантов реакций ещё больше:
4. Механические свойства металлов
Когда на металлический образец действует сила или система сил, он реагирует на это, изменяя свою форму (деформируется). Различные характеристики, которыми определяются поведение и конечное состояние металлического образца в зависимости от вида и интенсивности сил, называются механическими свойствами металла. Интенсивность силы, действующей на образец, называется напряжением и измеряется как полная сила, отнесенная к площади, на которую она действует. Под деформацией понимается относительное изменение размеров образца, вызванное приложенными напряжениями.
Информация о работе Основные классификационные свойства металлов