Ручная дуговая сварка

Автор работы: Пользователь скрыл имя, 12 Апреля 2012 в 16:04, контрольная работа

Описание

При ручной дуговой сварке покрытыми металлическими электродами, сварочная дуга горит с электрода на изделие, оплавляя кромки свариваемого изделия и расплавляя металл электродного стержня и покрытие электрода. Кристаллизация основного металла и металла электродного стержня образует сварной шов.

Работа состоит из  1 файл

Ручная дуговая сварка.docx

— 991.77 Кб (Скачать документ)

Опишите циклограммы  и особенности технологии точечной контактной сварки.

Точечная  сварка

Основной тип  соединения свариваемых деталей  при точечной сварке - нахлёсточное (рис. 1).

Рис. 1. Схема нахлесточных соединений боковины кузова легкового автомобиля

Свариваемые детали 1 (рис. 2) собирают внахлёстку и зажимают усилием FCB между двумя электродами 2, подводящими ток большой силы (до нескольких десятков кА) к месту сварки от источника электрической энергии 3 невысокого напряжения (обычно 3-8 В). Детали нагреваются кратковременным (0,01-0,5 с) импульсом тока до появления расплавленного металла в зоне контакта 4. Нагрев сопровождается пластической деформацией металла и образованием уплотняющего пояска 5, предохраняющего жидкий металл от выплеска и от взаимодействия с воздухом. Теплота, используемая при сварке, зависит от сопротивления между электродами и выделяется при прохождении тока непосредственно в деталях, контактах между ними и контактах деталей с электродами. Сопротивления самих электродов должны быть незначительны, так как выделяющаяся в них теплота не участвует в процессе сварки. Поэтому сечение электродов должно быть относительно большим, а материал электродов - обладать большой электро- и теплопроводностью. Электроды для точечной сварки изготавливают главным образом из меди и её сплавов.

Рис. 2. Схема точечной сварки    
 

  

а - без увеличения давления; б - с увеличением давления при проковке; 1 - сжатие деталей; 2 - включение  тока; 3 - проковка; 4 - снятие давления с  электродов

Рис. 3. Стадии цикла и  циклограммы точечной сварки

Перед сваркой  контактные поверхности деталей  зачищают металлической щеткой, пескоструйной  обработкой или травлением и обезжиривают растворителями. Это необходимо для  обеспечения стабильного процесса, который зависит от постоянства  контактного сопротивления.

Точечная сварка в зависимости от расположения электродов по отношению к свариваемым заготовкам может быть двусторонней (рисунок 3) и односторонней (рисунок 4). При односторонней  сварке ток течет через верхний 3 и нижний 4 листы, но нагрев места  контакта происходит только за счет тока, протекающего через нижний лист. Для  увеличения этого тока снизу располагают  токопроводящую медную подкладку 5. Одновременно происходит образование двух точек.

1 - сварочный  трансформатор; 2 - электроды; 3 - верхняя  заготовка; 4 - нижняя заготовка; 5 - медная  подкладка 

Рис. 4. Схема односторонней  точечной сварки

Режим точечной сварки может быть мягким и жестким.

Мягкий  режим характеризуется плавным нагревом заготовок сравнительно небольшим током. Время протекания тока обычно 0,5 - 3 с. Мягкие режимы применяют для сварки сталей, склонных к закалке.

Жесткие режимы осуществляют при малой продолжительности (0,1 - 1,5 с) тока относительно большой силы. Давление электродов также большое. Эти режимы применяют при сварке алюминиевых и медных сплавов, обладающих высокой теплопроводностью, а также высоколегированных сталей с целью сохранения коррозионной стойкости: на мягких режимах возможно обеднение металла хромом за счет образования карбидов хрома.

Точечную сварку широко используют для изготовления штампосварных конструкций. Толщина  свариваемых металлов в среднем  составляет 0,5-8 мм. Для осуществления  точечной сварки все более широкое  использование получают сварочные  роботы.

В многоточечных  сварочных машинах, предназначенных  для изготовления специальных сварных  конструкций (элементы кузовов автомобилей, вагонов, различных панелей) одновременно сваривается несколько точек (или  несколько десятков точек).

Для осуществления  процесса точечной сварки применяют  специальные машины контактной сварки (рис. 5), которые в процессе работы выполняют две основные функции - сжатие и нагрев соединяемых деталей. В конструкции любой машины условно  можно выделить механическое и электрическое  устройства.

Рис. 5. Общий вид машины точечной сварки (а) и её основные узлы (б)

Основной частью механического устройства машины для точечной сварки (рис. 3, б) служит корпус 1, на котором закреплены нижний кронштейн 2 с нижней консолью 3 и электрододержателем 4 с электродом и верхний кронштейн 7. Нижний кронштейн 2 обычно выполняют переставным или передвижным (плавно) по высоте, что дает возможность регулировать расстояние между консолями в зависимости от формы и размера свариваемых деталей.

На верхнем  кронштейне установлен пневмопривод усилия сжатия электродов 6, с которым соединена верхняя консоль 5 с электрододержателем 4. Для управления работой пневмопривода на машине установлена соответствующая пневмоаппаратура 8. Привод усилия может быть также пневмогидравлическим, гидравлическим и др. Корпус, верхний и нижний кронштейны и консоли воспринимают усилие, развиваемое пневмоприводом, и поэтому должны иметь высокую жесткость.

Электрическая часть машины состоит из сварочного трансформатора 10 с переключателем ступеней 11, контактора 12 и блока управления 9. Часто аппаратура управления смонтирована в отдельном шкафу управления. Контактор 12 подключает сварочный трансформатор к электрической питающей сети и отключает его.

Электрическое устройство машины предназначено для  обеспечения необходимого цикла  нагрева металла в зоне сварки. К электрическому устройству относится  также вторичный контур машины, который  образуют токоподводы, идущие от трансформатора к свариваемым деталям. Ток от трансформатора через жесткие и гибкие шины подводится к верхней 5 и нижней 3 консолям с электрододержателями 4. Консоли и электрододержатели с электродами участвуют в передаче сварочного тока и усилия и поэтому одновременно являются частями электрического и механического устройств машины.

Все части вторичного контура изготавливают из меди или  медных сплавов, имеющих высокую  электропроводность. Большинство элементов  вторичного контура, сварочный трансформатор  и контактор имеют внутреннее водяное охлаждение.

Рис. 3. Связь  основных свойств металлов с параметрами  процесса контактной сварки.

Назовите и  охарактеризуйте неразрушающие  методы контроля качества сварных работ.

Неразрушающие методы используют для проверки качества швов без их разрушения. При неразрушающих испытаниях, осуществляемых обычно на самих изделиях, оценивают те или иные физические свойства, косвенно характеризующие прочность или надежность соединений. Эти свойства, а точнее их изменение, обычно связаны с наличием дефектов. В связи с этим с помощью данных методов можно узнать местоположение дефектов, их размер и характер, что объясняет их обобщенное название – дефектоскопия. Все неразрушающие методы дефектоскопии различаются физическими явлениями, положенными в их основу.

Общая схема  неразрушающего контроля (рис. 1) включает:

  • объект контроля О;
  • излучающий И и приемный П преобразователи;
  • излучатель СИ и приемник СП сигналов;
  • индикаторное устройство ИУ.

Рис. 1. Общая схема неразрушающего контроля

Сигналы от излучателя и приемника поступают на индикаторное устройство и служат для принятия решения Р о дефектности или качестве объекта. В настоящее время при контроле сварных соединений и изделий применяются в той или иной мере все перечисленные методы оценки качества, так как универсального не существует. Поэтому важен не только правильный выбор метода контроля, но и их комбинация, сочетание неразрушающих и разрушающих испытаний. Главными критериями при этом должны быть выявляемость наиболее опасных дефектов данным методом, стоимость и производительность контроля. Оптимальным будет такое их сочетание, которое обеспечивает достаточно высокое качество соединений при минимальных затратах и необходимой производительности контроля.

Методы НРК подразделяются на следующие виды: акустические, вихретоковые, магнитные, оптические проникающими веществами (капиллярные и течеисканием), радиационные, радиоволновые, тепловые, электрические. При контроле сварных соединений чаще применяются четыре метода: радиационные, акустические, магнитные и испытания проникающими веществами.

К неразрушающим  методам близки так называемые безобразцовые испытания, сопровождающиеся небольшими нарушениями целостности материала, но не изделия в целом (например, измерение твердости), внешний осмотр, а также контроль параметров процесса сварки. 

Методы  НРК подразделяются на следующие виды: акустические, Магнитные и вихретоковые методы контроля

Магнитные методы контроля применяются для ферромагнитных материалов. Они основаны на измерении и анализе результатов взаимодействия электромагнитного поля с контролируемым объектом. При наличии в шве несплошностей, вследствие меньшей магнитной проницаемости дефекта, магнитный силовой поток будет огибать дефект, создавая магнитные потоки рассеяния (рис. 182).

Рис. 182. Схема магнитного контроля:  
1 - магнитное поле; 2 - дефект; 3 - искажение магнитного поля; 4 — магнитный порошок; 5 — скопление порошка

Изделия контролируют в наложенном постоянном или переменном магнитном поле либо после намагничивания в остаточном поле. Намагничивают  детали постоянным, импульсным униполярным, переменным или комбинированным  магнитным полем. После контроля детали размагничивают нагревом выше точки Кюри или переменным магнитным  полем с амплитудой, равномерно уменьшающейся  от некоторой максимальной величины (равной или несколько большей  амплитуды намагничивающего поля), до нуля.

По приемам  регистрации магнитных полей  и их неоднородностей магнитные  методы контроля подразделяют на магнитопорошковый, магнитографический, магнитоферрозондовый, индукционный, вихретоковый и др.

При магнитопорошковом методе на поверхность намагниченной детали наносят ферромагнитный порошок. Под действием магнитных полей частицы порошка скапливаются над дефектами. Возможно выявление тонких и мелких трещин с раскрытием больше 0,0025 мм и высотой не менее 0,025 мм. В стыковых сварных соединениях с усилением, выполненных автоматической сваркой, выявляются трещины с раскрытием не менее 0,01 мм и высотой не менее 0,1 мм, в соединениях, выполненных ручной сваркой, - соответственно 0,025 мм и 0,25 мм. Можно использовать порошки разного цвета. Для деталей с блестящей светлой поверхностью применяют черный порошок магнетита Fе3О4. При контроле деталей с черной поверхностью используют цветные, окрашенные или отожженные, кирпично-красные, серебристые или темно-коричневые порошки либо люминисцентные порошки, светящиеся при ультрафиолетовом облучении. Часто для удобства нанесения используют магнитные, в том числе магнитолюминисцентные, суспензии на масляно-керосиновой или водной основе (5...6 г мыла, 1 г жидкого стекла, 50... 100 г магнитного порошка на 1 л воды).

Подготовка деталей  к контролю заключается в очистке  их поверхностей от отслаивающейся ржавчины и грязи. Если применяется сухой  метод контроля или используется водная суспензия, то контролируемые поверхности  следует очистить от смазки и масла. Иногда перед выполнением контрольных  операций контролируемые поверхности  покрывают тонким просвечивающимся слоем белой краски или белого нитролака, чтобы черный порошок  был лучше виден. Преимущества магнито-порошкового метода: высокая чувствительность к тонким и мелким трещинам, простота, оперативность и наглядность, возможность применения для деталей практически любых форм и размеров.

При магнитографическом методе магнитные поля рассеяния записывают на магнитную ленту, наложенную на участок контроля. Магнитные ленты состоят из основы толщиной 100 мкм, сделанной из триацетата или лавсана, и магнитного слоя толщиной 10...20 мкм, состоящего из окиси железа, взвешенной в лаке. Они могут использоваться многократно. Записи на ленте преобразуются в электрические сигналы и наблюдаются на экране дефектоскопа. В автоматических устройствах применяется непрерывная запись и воспроизведение с бесконечной магнитной ленты в виде петли.

Преимущества  магнитографического метода контроля: высокая разрешающая способность (возможность выявления мелких дефектов), позволяющая регистрировать неоднородные магнитные поля, соизмеримые с  размером частиц магнитного слоя ленты (порядка 1 мкм), возможность регистрации  дефектов на сложных поверхностях и  в узких зазорах. Недостатки: необходимость  вторичного преобразования информации, регистрируются только составляющие магнитных  полей вдоль поверхности ленты, сложность размагничивания и  хранения ленты - необходимо предотвращать  воздействие внешних магнитных  полей.

При магнитоферрозондовом методе используются датчики - феррозонды. Они имеют катушки, генерирующие магнитное поле, взаимодействующее с остаточным или наведенным полем контролируемой детали. При попадании дефекта в зону взаимодействия этих полей в катушках датчика возникнет электрический сигнал, по его величине судят о дефекте. Этот метод имеет высокую чувствительность, но для обеспечения достоверности результатов поверхность изделия должна иметь хорошую чистому обработки.

При индукционном методе для регистрации магнитных полей рассеяния, образующихся около дефектов в намагниченной детали, используют катушку, которую двигают вдоль шва с постоянной скоростью. Магнитным полем детали в катушке наводится электродвижущая сила (ЭДС). В местах рассеяния поля ЭДС изменяется - образуется электрический сигнал, по которому судят о дефекте. Катушка намотана на сердечнике из металла с высокой магнитной проницаемостью - вместе они составляют магнитную индукционную головку. Она проще феррозонда, так как не требует генератора для питания. Метод отличается повышенной надежностью, может работать в сильных магнитных полях, однако требует перемещения магнитной головки с постоянной скоростью вдоль направления магнитного поля, при этом щель рабочего зазора в сердечнике должна быть перпендикулярна к направлению движения. Поэтому его рационально применять в массовом производстве (при большой длине швов). Индукционный метод используется, например, для контроля сварных труб, перемещающихся относительно индукционной головки. Магнитные методы контроля широко применяются для ферромагнитных материалов, преимущественно для обнаружения поверхностных и подповерхностных дефектов в стыковых швах. Достоинства магнитных методов: высокая производительность, безвредность, экономичность. Основные недостатки: усиление шва существенно снижает чувствительность магнитных методов контроля. Объемные включения выявляются хуже, чем плоские трещиноподобные.

Информация о работе Ручная дуговая сварка