Автор работы: Пользователь скрыл имя, 22 Ноября 2011 в 09:46, реферат
Дефектоскопия (от лат. defectus — недостаток и ...скопия), комплекс методов и средств неразрушающего контроля материалов и изделий с целью обнаружения дефектов.
Дефектоскопия включает: разработку методов и аппаратуру (дефектоскопы и др.); составление методик контроля; обработку показаний дефектоскопов.
Вследствие несовершенства технологии изготовления или в результате эксплуатации в тяжёлых условиях в изделиях появляются различные дефекты — нарушения сплошности или однородности материала, отклонения от заданногохимического состава или структуры, а также от заданных размеров. Дефекты изменяют физические свойства материала (плотность, электропроводность, магнитные, упругие свойства и др.).
Для
обнаружения нарушений
Наиболее
широко распространенным методом магнитной
дефектоскопии является метод магнитного
порошка. При этом методе намагниченную
деталь посыпают магнитным порошком
(сухой метод) или поливают магнитной
суспензией (мокрый метод). Частицы
порошка, попавшие в зоны магнитных
полей рассеяния, оседают на поверхности
деталей вблизи мест расположения дефектов.
Ширина полосы, па к-рой происходит оседание
порошка, значительно больше ширины «раскрытия»
дефекта, поэтому невидимые до этого дефекты
фиксируют по осевшему около них порошку
даже невооруженным глазом. Метод магнитного
порошка весьма прост и позволяет определять
места и контуры нарушений сплошности
материала, расположенные на поверхности
деталей, а также на глубине до 2—3
мм под поверхностью. Намагничивание деталей,
обработка их порошком (чаще суспензией),
а также последующее размагничивание
производятся с помощью магнитных дефектоскопов.
Когда в контролируемых деталях возможна
различная ориентировка дефектов, необходимо
проводить двойной контроль с продольным
и циркулярным намагничиванием. Более
производительным является магнитно-порошковый
контроль с использованием комбинированного
намагничивания.
Циркулярное намагничивание является основным при магнитной дефектоскопии, продольное же намагничивание применяется только в тех случаях, когда в контролируемой детали предполагаются строго поперечные дефекты или применение циркулярного намагничивания затруднено или сопряжено с порчей детали (напр., из-за опасного перегрева детали в местах контактов с электродами дефектоскопа). Чувствительность магнитно-порошкового метода существенно зависит от степени намагниченности детали во время обработки магнитной суспензией (или порошком). В большинстве случаев для проведения магнитного контроля достаточна остаточная намагниченность материала контролируемых деталей после их намагничивания в тех или иных магнитных полях. Однако при контроле деталей из материалов с малой коэрцитивной силой (малоуглеродистая сталь или сталь в отожженном состоянии) остаточная намагниченность может быть недостаточной даже если намагничивание производилось в магнитных полях, близких к насыщению. В этих случаях обработка деталей суспензией или порошком должна производиться во время действия на деталь магнитного поля, требующегося для создания необходимой намагниченности материала. Такой вид контроля, в отличие от контроля на остаточной намагниченности, наз. контролем в приложенном магнитном поле.
Выявляемость дефектов зависит также и от их гео- метрич. параметров. Лучше выявляются дефекты, имеющие большую высоту, большее отношение высоты к ширице и находящиеся на меньшей глубине. Режимы намагничивания выбираются с таким расчетом, чтобы в каждом конкретном случае хорошо обнаруживались дефекты материала, представляющие опасность для работы детали и не обнаруживались бы неопасные для данной детали дефекты. Так, для контроля высоконагруженных деталей, прошедших чистовую обработку поверхности, на поверхности создают намагничивающее поле —100 э — при контроле на остаточном намагничивании и — 30 э — при контроле в приложенном поле. При этом обнаруживаются выходящие на поверхность дефекты высотой более 0,05 мм и примерно половина дефектов такой же высоты, находящихся па глубине до 0,5 мм. Для обнаружения более мелких дефектов (волосовин, шлифовочных трещин и др.) применяется т.п. режим «повышенной жесткости», при к-ром создают магнитные поля на поверхности детали соответственно —180 и —60 э. При контроле на режиме «пониженной жесткости» используется обычно остаточная намагниченность после намагничивания в поле на поверхности детали —60 э\ при этом выявляются выходящие на поверхность трещины, вытянутые в глубь металла волосовины и часть более мелких поверхностных и подповерхностных дефектов. О характере дефекта судят по оседанию магнитного порошка. Так, закалочные, ковочные и др. трещины вызывают плотное оседание порошка в виде резких ломаных линий. Флокены выявляются в виде отдельных искривленных черточек, расположенных поодиночке или группами, слой осевшего порошка в этом случае также довольно плотен. Волосовины обнаруживаются по оседанию порошка в виде прямых или слегка изогнутых (по волокну) тонких черточек, интенсивность оседания порошка в этом случае меньшая, чем при трещинах поперечных разрезов этих дефектов.
Для
улучшения видимости порошка
его окрашивают в контрастные
цвета по отношению к цвету
контролируемых деталей. Наряду с обычными
порошками красно- коричневого и
темно-серого цветов, используемых при
контроле деталей со светлой поверхностью,
применяются порошки светло-
Магнитно-порошковый метод М. д. применяется не только в процессе производства изделий, но и при их эксплуатации, напр. для обнаружения трещин усталостного происхождения. Переносные дефектоскопы позволяют применять магнитно-порошковый метод для контроля деталей, узлов и агрегатов без их разборки.
Весьма
перспективным методом
При контроле качества сварки трубопроводов широко используется магнитографический метод дефектоскопии.
Методы магнитной дефектоскопии, используемые для контроля качества термической обработки, а иногда и для сортировки металла по маркам, основываются на связи между какой-либо магнитной хар-кой и структурномеханич. свойствами или химическим составом материала контролируемых деталей; эта группа методов известна под названием с т р у к- туроскопических. Чаще всего в магнитной структуроскопии используются следующие магнитные характеристики: коэрцитивная сила, остаточная индукция, намагниченность насыщения), максимальная магнитная проницаемость. В соответствии с этим магнитно-структуроскопические методы разделяются на ферро- метрические, пермеаметрические, коэрцитиметрические, реманенцескопические.
Важное преимущество широко распространенных коэрцитиметрических методов заключается в том, что точность измерения коэрцитивной силы практически не зависит от формы и размеров контролируемых деталей. В коэрцитиметричких. приборах (ко- эрцитиметрах) контролируемая деталь намагничивается до технические насыщения, после чего подвергается действию постепенно увеличивающегося магнитного поля обратного направления; при этом определяется величина магнитного поля (или тока, питающего размагничивающее устройство), при котором намагниченность детали становится равной нулю. В реманенцескопичких приборах оценивается обычно величина кажущейся остаточной индукции. Это осуществляется либо баллистическим способом — быстрым продвижением детали сквозь катушку, соединенную с измерительным прибором, либо магнитометрическим — измерением напряженности магнитного поля, создаваемого контролируемой деталью, на определенном расстоянии от этой детали. Большое распространение получили весьма простые пермеаметричкие. приборы, в которых датчиком является система из первичной и вторичной катушек, располагаемых либо на контролируемой детали, либо на П-образном сердечнике, концы которого замкнуты деталью. По первичной катушке обычно пропускается ток промышленной частоты, а в цепь вторичной катушки включается измерительный прибор. Для повышения разрешающей способности пермеаметричкого метода применяются различные компенсационные схемы, позволяющие использовать измерительную аппаратуру более высокой чувствительности.
Магнитный метод с использованием феррозондов применяется и для измерения толщины стенок деталей из неферромагнитных материалов, однако в этом случае необходим доступ к обеим сторонам этих стенок.
В результате контроля методами магнитной дефектоскопии детали из ферромагнитных материалов приобретают остаточную намагниченность, что в ряде случаев может повести к нарушению нормальной работы изделия, в котором будут находиться намагниченные детали. Так, напр., намагниченность деталей может вызвать повышение девиации компаса самолета или повышенный износ в узлах трения в результате притяжения железных частиц. Поэтому после магнитного контроля необходимо производить размагничивание деталей.
Размагничивание
осуществляется чаще всего путем
продвижения намагниченных
Заключение.
Дефектоскопия — равноправное и неотъемлемое звено технологических процессов, позволяющее повысить надёжность выпускаемой продукции. Однако методы Дефектоскопия не являются абсолютными, т.к. на результаты контроля влияет множество случайных факторов. Об отсутствии дефектов в изделии можно говорить только с той или иной степенью вероятности. Надёжности контроля способствует его автоматизация, совершенствование методик, а также рациональное сочетание нескольких методов. Годность изделий определяется на основании норм браковки, разрабатываемых при их конструировании и составлении технологии изготовления. Нормы браковки различны для разных типов изделий, для однотипных изделий, работающих в различных условиях, и даже для различных зон одного изделия, если они подвергаются различному механическому, термическому или химическому воздействию.
Применение дефектоскопии в процессе производства и эксплуатации изделий даёт большой экономический эффект за счёт сокращения времени, затрачиваемого на обработку заготовок с внутренними дефектами, экономии металла и др. Кроме того, дефектоскопия играет значительную роль в предотвращении разрушений конструкций, способствуя увеличению их надёжности и долговечности.
Литература:
1.Трапезников А. К., Рентгенодефектоскопия, М., 1948; Жигадло А. В., Контроль деталей методом магнитного порошка, М., 1951;
2.Таточенко Л. К., Медведев С. В., Промышленная гамма-дефектоскопия, М., 1955;
3. Дефектоскопия металлов. Сб. ст., под ред. Дефектоскопия С. Шрайбера, М., 1959;
4.Современные методы контроля материалов без разрушения, под ред. С. Т. Назарова, М., 1961; Кифер И. И., Испытания ферромагнитных материалов, 2 изд., М. — Л., 1962;
5.
Использованы материалы с