Моно транспорт

Автор работы: Пользователь скрыл имя, 15 Ноября 2012 в 21:26, реферат

Описание

Во все времена и у всех народов транспорт играл важную роль. На современном этапе значение его неизмеримо выросло. Сегодня существование любого государства немыслимо без мощного транспорта.
В ХХ в. и в особенности во второй его половине произошли гигантские преобразования во всех частях света и областях человеческой деятельности.

Содержание

Введение___________________________________________________________3
1. Электромобиль___________________________________________________4
2. Легкие электротранспортные средства_____________________________12
3. Автомобиль, движущийся по рельсам_______________________________17
4. Монокар________________________________________________________20
5. Беспилотные самолеты___________________________________________27
6. Гелиотранспорт_________________________________________________32
7. Монорельсовые дороги____________________________________________36
8. Моторвагонные поезда___________________________________________38
9. Комбинированные системы общественного рельсового транспорта_____43
10. Скоростной пассажирский трубопровод___________________________47
11. Индивидуальные летательные аппараты__________________________49
Заключение________________________________________________________52
Литература_______________________________________________________53

Работа состоит из  1 файл

ОКТ-Реферат.doc

— 749.00 Кб (Скачать документ)

По мере того как системы  комбинированного рельсового транспорта приобретали признание в качестве полноправных участников процесса пассажирских перевозок наряду с традиционными системами, прояснялись возникающие вопросы и находились ответы на них, но одновременно повышались требования со стороны причастных транспортных администраций. Компании-операторы стараются решать проблемы совместимости полностью независимых, различных с технической точки зрения и по-разному управляемых транспортных систем на одной инфраструктуре. По общему мнению, согласования технических параметров подвижного состава, постоянных сооружений и устройств, унификации эксплуатационных процедур недостаточно. Требуется более разносторонний подход, соответствующий условиям каждого отдельного случая.

Для таких транспортных систем, как трамвай- поезд, основной проблемой остается обеспечение безопасности при столкновениях. Подвижной состав системы должен представлять пользователям сочетание качеств, присущих как трамваю (доступность, комфорт, вписывание в городскую среду), так и поезду (высокая, как правило, бóльшая, чем у обычного трамвая, скорость, достаточная пассажировместимость, сопротивляемость ударным нагрузкам).

Последний аспект характеризуется  тем, что в течение длительного  времени требования к ударной  прочности подвижного состава трамвая  и железных дорог, обеспечивающей безопасность пассажиров при столкновениях, существенно отличались. Так, для вагонов поездов магистральных железных дорог величина лобовой ударной нагрузки, воспринимаемой без разрушения основной конструкции и, следовательно, без ущерба для здоровья пассажиров, во многих странах определена равной 150 т. В США действуют более строгие стандарты, в Азии и Африке - менее строгие. Для вагонов трамвая с учетом меньшей скорости движения и вероятности столкновений в общем случае считается достаточной сопротивляемость ударной нагрузке 50 т, причем эта величина тоже варьируется в некоторых пределах в зависимости от местных условий.

 

 

 

 

 

 

Разница между 150 и 50 т и послужила, в частности, одной из причин отсутствия у SNCF планов по совместному использованию  железнодорожной инфраструктуры. Напротив, железные дороги Германии и Швейцарии  проявили бóльшую гибкость и несколько  лет назад снизили требования к ударной прочности подвижного состава облегченного типа до 60 т, объясняя это спецификой эксплуатации и техническим прогрессом в областях проектирования и материаловедения, позволившим, например, вводить в конструкцию подвижного состава деформируемые элементы, поглощающие энергию соударения. Разработаны и другие меры активной и пассивной безопасности, обеспечивающие достаточную прочность даже при уменьшении массы.

В подвижном составе новейших систем трамвай- поезд, вводимом в эксплуатацию после 1997 г., удалось совместить эксплуатационную гибкость двухсистемного подвижного состава транспортной системы CityLink в Карлсруэ, позволяющую ему обращаться по линиям, электрифицированным на разных родах тока, и высокий уровень комфорта современных поездов трамвая, например наличие пола пониженного уровня, облегчающего и ускоряющего посадку и высадку пассажиров.

Компании-изготовители также вводят в подвижной состав таких систем элементы внутреннего оснащения, прежде характерные только для вагонов  пассажирских поездов, например установки кондиционирования воздуха, кресла с изменяемым углом наклона спинок, перегородки, выделяющие в общем салоне отдельные купе, и т. п.

Подвижной состав систем трамвай- поезд  в Германии оснащается выдвижными ступенями  у входных дверей для компенсации разницы уровней пола тамбуров и посадочных платформ. В тяговом приводе применяются преобразовательные установки и двигатели, позволяющие развивать скорость до 100 км/ч. В то же время это обусловливает определенное увеличение стоимости подвижного состава (до 4,8 млн. нем. марок за 200-местный поезд), отражающееся на эксплуатационных расходах. Так, в Саарбрюккене повышение уровня комфорта и выполнение требований, обеспечивающих совместимость трамвая и железных дорог, обходится в 8,5 марки/поездо-км, или 5 млн. марок в год, что вынуждает увеличивать цену каждого билета на 0,5 марки. Однако, по общему мнению, эти затраты считаются оправданными.

Все сказанное объясняет, почему термин "трамвай- поезд" становится все  более привычным для администраций городского общественного транспорта и железных дорог многих стран. Использование этой концепции открывает путь к возвращению рельсового транспорта в города и дает возможность решить многие проблемы внутригородских и пригородных пассажирских перевозок.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

10.Скоростной пассажирский трубопровод

 

Этот скоростной пассажиро-трубопровод  называется FTS (Fast Tube System). Придумали его англичане. FTS представляет собой сеть труб с проложенными в них обычными железнодорожными рельсами, а также N-ное количество станций для приёма пассажиропотока, который по этим трубам и планируется направить.

Само собой, как и в описании любого, транспортного проекта ХХI века, в первую очередь, любопытствующим представляются глобальные достоинства проекта. Они обычно одинаковые, но в этот раз некоторые назовём: во-первых, экология, пробки на дорогах и подобное, во-вторых, это альтернатива всему общественному транспорту и, наконец, в-третьих, FTS — дёшево и совсем не сердито. Быстро, удобно, никаких проблем.

Изобретатели пишут, что самым  затратным в FTS будет возведение станций. Всё остальное ерунда: прокладка  труб — тот же водопровод, капсулы — дешевле автомобилей. Действовать система будет целиком и полностью автоматически, так что и на персонал особо тратиться не надо. Стартовые инвестиции и вперёд к фантастическим прибылям и экологически чистому миру.

Проектировщики придумали, что  в трубах, которых должно быть две (туда и обратно), будет вакуум — он-то и обеспечит скорость, бесшумность и отсутствие воздушного сопротивления. Внутри же, по замыслу британских разработчиков, капсула — это система жизнеобеспечения и беззаботного времяпрепровождения с диваном, телевизором и, что немаловажно, системой подачи воздуха. Никаких средств управления в капсуле нет — незачем (рис.10.1).

 

Рисунок 10.1. Конструкция пассажирского трубопровода

Все капсулы Fast Tube System движутся с одинаковой скоростью и в унисон. Как быть с питанием — разработчики до конца не определились: решено, что это будет электричество, а вот как подвести энергию пока не ясно. Конструкторы пишут, что да, это "конечно, одна из главных проблем проекта", ну да мы что-нибудь придумаем.

Впрочем, не будем останавливаться  на "мелочах" — для FTS итак уже много чего придумано интересного: дизайн станций, например, комфорт и сервис для пассажиров.

Каждая станция хранит в вакуумном  отстойнике некоторое количество капсул.

И вообще, капсулы (пустые и полные) циркулируют по FTS удивительно чётко - автоматически. Для трубопровода авторы проекта придумали "Автоматическую систему управления". Это царь и Бог FTS, его надо принять как  должное и двигаться дальше.

 

 

Отважившиеся стать пассажирами  подходят к компьютеру, выбирают маршрут, оплачивают поездку и ждут. Вокзал есть вокзал. Вскоре голос из репродуктора под потолком объявляет, к какому выходу должны подойти отъезжающие — так же, как в переговорном пункте называют номер телефонной кабины.

"Карета" подана, пассажир заходит  в неё, как в лифт, после чего  вакуумная "упаковка" автоматически  закрывается, капсула принимает  горизонтальное положение, выезжает  из станционного "аппендицита"  во "вторую трубу", где происходит первое ускорение, а затем — в Главную трубу. 420 км/час.

Хотя авторы проекта и пишут, что в прямой трубе скорость выше, им известно о том, что труба должна изгибаться — разработали 12 вариантов изгиба.

Да, есть ещё несколько "мелочей" и "главных проблем": как ни крути, но капсулам иногда придётся двигаться с разной скоростью — ускоряться, замедляться перед станциями — это, как пишут конструкторы — "существенные технические препятствия".

Теперь о комфорте и сервисе  для пассажиров. Начнём с того, что при входе в капсулу "они будут испытывать не больший психологический дискомфорт, чем при входе в лифт". Не будет дискомфорта и внутри: здесь идеальный искусственный климат, а на всякий случай — кислородные маски.

Ещё рассматривается вариант с подушкой безопасности — такой же, как в автомобилях: "воздушная подушка должна быть достаточно большой, чтобы фактически заполнить капсулу, таким образом, зафиксировав пассажира на поверхности уютной кровати в безопасном, но сильно ограниченном положении. Однако поставка воздуха после развёртывания подушки могла бы быть связана с некоторыми специфическими трудностями".

Ремни безопасности — дело сугубо добровольное: "в случае механической поломки (колёса, рельсы, тормоза) система безопасна, но если такая поломка случится, то последствия будут очень серьёзными, как несчастный случай в воздухе".

Перегрузки при ускорении и  замедлении предлагается минимизировать за счёт эргономики пассажирского места. В случае проблем пассажир сможет сообщить о них посредством видеосвязи, оплата производится кредитной карточкой. С помощью всё той же видеосвязи можно заказать себе такси к станции следования.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

11.Индивидуальные летательные аппараты

 

Одна из первых моделей миниатюрного разборного вертолёта была создана компанией Hiller Helicopters  в 1954 году. Она называлась  Rotorcycle, и была  создана специально для американских военных              лётчиков (рис.11.1). На ней пилоты должны были возвращаться к "своим" через линию фронта, если их самолёты были сбиты над вражеской территорией. Сброшенный с парашютом Rotorcycle пилоты собирали бы вручную без каких-либо подручных инструментов в течение нескольких минут.

 


 

 

 

 

 

 

 

 

 

 

 

 

 

 

Рисунок 11.1.  Rotorcycle

10 января 1957 года опытный образец  Rotorcycle поднялся в небо. По результатам испытаний был заключён контракт с английским авиационным заводом Сандерса Роя (Saunders Roe) на создание ещё десяти вертолётов. В итоге, к концу 1961 года было построено двенадцать Rotorcycles: семь военных (XROE-1 и YROE-1) и пять гражданских (G-46).

Военные "вертушки" были отправлены в США для дальнейших испытаний, три вертолёта в ноябре 1962 года приобрёл исследовательский центр NASA (NASA Ames Moffett Field), а ещё два остались где-то в Европе. Rotorcycle так и не был принят на вооружение - американские военные по какой-то причине отказались от него ещё до окончания испытаний. 

В конце 1999-го года у американцев  появились неожиданные последователи - японская компания «Engineering System». Она  представила свою модель GEN H-4. 70-килограммовый пилот может летать на ней без дозаправки целый час со скоростью до 88 км/час. Максимальный вес, который способен поднять вертолет - 86 кг. При взгляде на фотографии схожесть моделей становится очевидной (рис.11.2).

 


 

 

 

 

 

 

 

 

 

Рисунок 11.2. Миниатюрный вертолет компании «Engineering System»

Вертолёт приводится в движение четырьмя суперлёгкими двигателями (40 лошадиных сил), но если один из двигателей выйдет из строя, GEN H-4 может лететь и  на трёх, а экстренную посадку совершить  и на двух.

Каждый двигатель работает автономно, и разработчики считают маловероятной  поломку всех двигателей сразу. Но и  на такой непредвиденный случай в  комплект GEN H-4 входит парашют.

Топливо для вертолёта - это смесь  автомобильного бензина с маслом для двухтактных двигателей в соотношении 30:1. В баке помещается от 2 до 5 галлонов топлива. 

Представители Engineering System уверяют, что  срок обучения для пилотов минимальный (от двух часов) и нужен больше для  их же безопасности: управление достаточно бесхитростное. Панель управления расположена прямо перед пилотом между двумя ручками, как на мотоцикле. Основные кнопки расположены справа и слева: на них удобно нажимать большими пальцами.Разработчики планирует поместить на панели определитель высоты, а под сиденьем баллоны с кислородом, так как одноместный геликоптер сможет подниматься в области разреженного воздуха. Ориентировочная стоимость вертолёта ~ 30000 $.

Второе устройство для индивидуальных полётов называется ракетный ранец. Его называют по разному- Small Rocket Lift Device, Bell Rocket Belt, Personal Jetpack, Rocket Backpack, Jet Pack, Jet Flying Belt, Jet Belt, Jet Vest и так далее - но достоверной информации об этом "средстве передвижения" крайне мало

Хотя первый короткий эксперимент  с размещением на спине пороховых ракет, запечатлела ещё немецкая кинохроника 30-х годов  (зрители видят быструю и достаточно жёсткую "посадку" на землю испытателя) - идею о техническом воплощении ракетного ранца приписывают Уэнделлу Муру (Wendell Moore), инженеру из компании Bell Aerospace. В 1953 году Мур взялся за разработку ранца, получившего тогда неромантичное название "Маленькое ракетное подъёмное устройство" (Small Rocket Lift Device - SRLD). Первую версию SRLD в 1958 году Уэнделл Мур испытал сам.

Несмотря на сомнительный успех первых коротких "полётов" на небольшое расстояние, разработка устройства в Bell Aerospace продолжалась - были добавлены рычаги управления, усовершенствована конструкция и так далее, но сделать ранец по-настоящему безопасным всё же не удавалось. В конечном счёте, были достигнуты 20-секундная продолжительность полёта с максимальной высотой 4,5 метра.

Информация о работе Моно транспорт