Методы формализованного представления систем в исследованиях

Автор работы: Пользователь скрыл имя, 13 Ноября 2011 в 14:36, курсовая работа

Описание

Эффективность исследования систем управления во многом определяется выбранными и использованными методами исследования.

Содержание

Введение

1. Классификация методов исследования систем управления

2. Методы формализованного представления систем в исследованиях

2.1 Аналитические методы

2.2 Статистические методы

2.3 Теоретико-множественные представления

2.4 Логические методы

2.5 Лингвистические и семиотические представления

2.6 Графические представления

2.7 Сетевой метод

2.8 Имитационное динамическое моделирование

Заключение

Библиографический список

Работа состоит из  1 файл

ису.doc

— 217.00 Кб (Скачать документ)

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

Государственное образовательное  учреждение высшего  профессионального  образования

АМУРСКИЙ  ГОСУДАРСТВЕННЫЙ  УНИВЕРСИТЕТ

(ГОУВПО  «АмГУ»)

Кафедра Экономики и Менеджмента организации

 
 

КОНТРОЛЬНАЯ РАБОТА

на тему: Методы формализованного представления систем в исследованиях

по дисциплине Исследование систем управления 
 
 
 
 
 
 
 
 

Благовещенск 2010 

 

     

     СОДЕРЖАНИЕ

 

Введение

1. Классификация методов исследования систем управления

2. Методы формализованного представления систем в исследованиях

2.1 Аналитические методы

2.2 Статистические методы

2.3 Теоретико-множественные представления

2.4 Логические методы

2.5 Лингвистические и семиотические представления

2.6 Графические представления

2.7 Сетевой метод

2.8 Имитационное динамическое моделирование

Заключение

Библиографический список 

 

     

     ВВЕДЕНИЕ

 

     Эффективность исследования систем управления во многом определяется выбранными и использованными  методами исследования.

     Методы  исследования представляют собой способы, приемы проведения исследований. Их грамотное применение способствует получению достоверных и полных результатов исследования возникших в организации проблем. Выбор методов исследования, интеграция различных методов при проведении исследования определяется знаниями, опытом и интуицией специалистов, проводящих исследования.

     Всю совокупность методов исследования можно разбить на три большие  группы: методы, основанные на использовании  знаний и интуиции специалистов; методы формализованного представления систем управления (методы формального моделирования исследуемых процессов) и комплексированные методы. 

 

     

     1. КЛАССИФИКАЦИЯ МЕТОДОВ ИССЛЕДОВАНИЯ СИСТЕМ УПРАВЛЕНИЯ

 

     Всю совокупность методов исследования можно разбить на три большие  группы: методы, основанные на использовании  знаний и интуиции специалистов; методы формализованного представления систем управления (методы формального моделирования исследуемых процессов) и комплексированные методы.

     Первая  группа — методы, основанные на выявлении и обобщении мнений опытных специалистов-экспертов, использовании их опыта и нетрадиционных подходов к анализу деятельности организации включают: метод «мозговой атаки», метод типа «сценариев», метод экспертных оценок (включая SWOT-анализ), метод типа «Дельфи», методы типа «дерева целей», «деловой игры», морфологические методы и ряд других методов.

     Вторая  группа — методы формализованного представления систем управления, основанные на использовании математических, экономико-математических методов и моделей исследования систем управления. Среди них можно выделить следующие классы:

     аналитические (включают методы классической математики — интегральное исчисление, дифференциальное исчисление, методы поиска экстремумов функций, вариационное исчисление и другие, методы математического программирования, теории игр);

     статистические (включают теоретические разделы математики — математическую статистику, теорию вероятностей — и направления прикладной математики, использующие стохастические представления — теорию массового обслуживания, методы статистических испытаний, методы выдвижения и проверки статистических гипотез и другие методы статистического имитационного моделирования);

     теоретико-множественные, логические, лингвистические, семиотические представления (разделы дискретной математики, составляющие теоретическую основу разработки разного рода языков моделирования, автоматизации проектирования, информационно-поисковых языков);

     графические (включают теорию графов и разного рода графические представления информации типа диаграмм, графиков, гистограмм и т.п.).

     Наибольшее распространение в экономике в настоящее время получили

     математическое  программирование и статистические методы. Правда, для представления статистических данных, для экстраполяции тенденций тех или иных экономических процессов всегда использовались графические представления (графики, диаграммы и т.п.) и элементы теории функций (например, теория производственных функций). Однако целенаправленное применение математики для постановки и анализа задач управления, принятия экономических решений разного рода (распределения работ и ресурсов, загрузки оборудования, организации перевозок и т.п.) началось с внедрения в экономику методов линейного и других видов математического программирования (работы Л. В. Канторовича, В. В. Новожилова, С.А. Соколицына и др.). Привлекательность этих методов для решения формализованных задач, какими обычно являются названные выше и другие экономические задачи на начальном этапе их постановки, объясняется рядом особенностей, отличающих методы математического программирования от методов классической математики.

     При стремлении более адекватно отобразить проблемную ситуацию в ряде случаев  целесообразно применять статистические методы, с помощью которых на основе выборочного исследования получают статистические закономерности и распространяют их на поведение системы в целом. Такой подход полезен при отображении таких ситуаций, как организация ремонта оборудования, определение степени его износа, настройка и испытание сложных приборов и устройств и т.д. Все более широкое применение находит статистическое имитационное моделирование экономических процессов и ситуаций принятия решений.

     В последнее время с развитием  средств автоматизации возросло внимание к методам дискретной математики: знание математической логики, математической лингвистики, теории множеств помогает ускорить разработку алгоритмов, языков автоматизации проектирования сложных технических устройств и комплексов, языков моделирования ситуаций принятия решений в организационных системах.

     В настоящее время в экономике  и организации производства применяются практически все группы методов формализованного представления систем. Для удобства их выбора в реальных условиях на базе математических направлений развиваются прикладные методы и предлагаются их классификации.

     К третьей группе относятся комплексированные методы: комбинаторика, ситуационное моделирование, топология, графосемиотика и др. Они сформировались путем интеграции экспертных и формализованных методов.

     Схема классификации методов приведена на рис. 1 

     Рис. 1 - Классификация методов исследования систем управления

 

     

     2. МЕТОДЫ ФОРМАЛИЗОВАННОГО ПРЕДСТАВЛЕНИЯ СИСТЕМ В ИССЛЕДОВАНИЯХ 

     В настоящее время известны различные  классификации методов формализованного представления систем. В результате этого методы, иногда возникающие  независимо, имеют в основном только терминологические различия. В работе приведена наиболее распространенная классификация, в которой выделяют следующие группы методов формализованного представления: аналитические, статистические, теоретико-множественные, логические, лингвистические, семиотические, графические. Общая направленность классификации следующая: каждая последующая группа методов позволяет формализовать задачу, которая не может быть решена в рамках предыдущей группы методов. 

     2.1 Аналитические методы 

     Аналитическими  называются методы, в которых ряд  свойств многомерной, многосвязной системы отображается в n-мерном пространстве одной единственной точкой, совершающей какое-то движение (рис. 2). 

     

     Рисунок 2 – Аналитический метод 

     Это отображение осуществляется либо с помощью функции f [Sx], либо посредством оператора (функционала) F[Sx]. Можно также две или более систем или их частей отобразить точками, и рассматривать взаимодействие этих точек, каждая из которых совершает какое-то движение, имеет свое поведение. Поведение точек и их взаимодействие описывается аналитическими закономерностями.

     Основу  терминологического аппарата аналитических  представлений составляют понятия  классической математики и некоторых  новых ее разделов (величина, функция, уравнение, система уравнений, производная, дифференциал, интеграл, функционал и т.д.).

     Аналитические методы применяются в тех случаях, когда свойства системы можно  отобразить с помощью детерминированных  величин или процессов, то есть знания о процессах и событиях в некотором интервале времени позволяют полностью определить поведение их вне этого интервала. Эти методы используются при решении задач движения и устойчивости, оптимального размещения, распределения работ и ресурсов, выбора наилучшего пути, оптимальной стратегии поведения в конфликтных ситуациях и т.п. При практическом применении аналитических представлений для отображения сложных систем следует иметь в виду, что они требуют установления всех детерминированных взаимосвязей между учитываемыми компонентами и целями системы в виде аналитических зависимостей. Для сложных многокомпонентных, многокритериальных систем получить требуемые аналитические зависимости очень трудно. Более того, если даже это и удается, то практически невозможно доказать правомерность применения этих аналитических выражений, то есть адекватность модели рассматриваемой задаче. 

     2.2 Статистические методы 

     В тех случаях, когда не удается  представить систему на основе детерминированных  категорий, можно применить отображение  ее с помощью случайных (стохастических) событий, процессов, которые описываются соответствующими вероятностными характеристиками и статистическими закономерностями. (рис.3). 

     

     Рисунок 3 – Статистический метод 

     Размытую  точку следует понимать как некоторую  совокупность, характеризующую движение системы (ее поведение). При этом границы области заданы с некоторой вероятностью (размыты), и движение точки определяется некоторой случайной функцией. Закрепляя все параметры кроме одного можно получить срез по линии a – b , физический смысл которого – воздействие данного параметра на поведение системы, что можно описать статистическим распределением по этому параметру. Аналогично можно получить двумерную, трехмерную и т.д. картину статистического распределения.

     На  статистических отображениях базируются математическая статистика, теория статистических испытаний (или статистического имитационного моделирования), частным случаем которой является метод Монте-Карло, теория выдвижения и проверки статистических гипотез, частным случаем которой является байесовский подход к исследованию процессов передачи информации в процессах общения, обучения и других ситуациях, характерных для сложных развивающихся систем.

     Статистические  отображения позволили расширить  области применения ряда дисциплин, возникших на базе аналитических представлений. Так возникли статистическая теория распознавания образов, стохастическое программирование, новые разделы теории игр и др. На базе статистических представлений возникли и развиваются такие прикладные направления, как теория массового обслуживания, теория статистического анализа и др.

     Расширение  возможностей отображения сложных  систем и процессов по сравнению  с аналитическими методами можно  объяснить тем, что при применении статистических представлений процесс  постановки задачи как бы частично заменяется статистическими исследованиями, позволяющими, не выявляя все детерминированные связи между изучаемыми событиями или учитываемыми компонентами сложной системы, на основе выборочного исследования получать статистические закономерности и распространять их с некоторой вероятностью на поведение системы в целом.

     Однако  не все процессы и явления могут  подчиняться статистическим закономерностям, не всегда может быть выбрана представительная выборка, доказана правомерность применения статистических закономерностей, часто для получения статистических закономерностей требуются недопустимо большие затраты времени, что также ограничивает возможности их применения. В этих случаях следует рассматривать возможность применения других методов представления систем. 

Информация о работе Методы формализованного представления систем в исследованиях