Карст. Эволюция карста

Автор работы: Пользователь скрыл имя, 20 Ноября 2012 в 18:00, реферат

Описание

Разнообразие карстующихся горных пород, условий их залегания, рельефа, климата, зон движения и состава вод, др. факторы приводят к образованию различных поверхностных и подземных карстовых форм. Непосредственным изучением подземного карста (пещер) занимается наука спелеология, которая возникла на пересечении интересов карстоведения и пещероведения. Через карстоведение она связана с основными «обеспечивающими» геологическими (геология, гидрогеология, геоморфология) и географическими (гидрология, климатология, почвоведение, ландшафтоведение, палеогеография) науками; через пещероведение - с ботаникой, зоологией, археологией, антропологией, медициной, спортом, хозяйством.

Работа состоит из  1 файл

карст.docx

— 297.32 Кб (Скачать документ)

Карстовые шахты обычно образуются в зоне вертикальной нисходящей циркуляции из колодцеобразных понор и колодцев. Поднятие страны сопровождается углублением  колодцев и возникновением шахт. В результате многократных поднятий, чередующихся с периодами замедления (или опускания), образуются карстовые шахты и вертикальные пещеры. Этапы замедления поднятия документируются в виде горизонтальных каналов былых зон горизонтальной циркуляции, отходящих от шахт. В поднимающемся карстовом массиве, где природная шахта стягивает всё большие массы поглощаемых атмосферных осадков, новые поднятия естественно сопровождаются её углублением. Чаще карстовые шахты делят на: глубочайшие – более 1000 м, очень глубокие – 1000–500, глубокие – 500–250, обычные – 250–50, неглубокие – 50–20 м. Шахты с очень расширенным устьем, имеющим поперечник в десятки метров, называются пропастями. Морфологически шахты разнообразны – с почти вертикальным стволом, со спиральным, двухствольно разветвляющиеся, многоэтажные и др. Имеются переходные формы между карстовыми шахтами и вертикальными пещерами. Обычно различают два типа карстовых шахт: коррозионные и провальные (Э.А. Мартель, 1908). В зависимости от характера движения и состава образовавших их вод, выделяют:

1.  Коррозионные, возникшие за счёт вод зоны вертикальной нисходящей циркуляции, – требичский тип. Требичский грот около Триеста, глубиной 321–329 м – естественная шахта и пещера, изучена в 1840–1841 гг. Линдером.

2.  Провальные, возникшие над пустотами, созданными водами зоны горизонтальной циркуляции, – бреховский тип. Встречается редко. Назван по шахте в районе с. Брехово Пермской области.

3.  Провальные, возникшие над пустотами, созданными водами зоны горизонтальной циркуляции, – пятигорский тип. Назван по провалу, глубиной 41 м, на горе Машук в г. Пятигорске.

4.  Коррозионные, образованные напорными водами зоны вертикальной восходящей (сифонной) циркуляции, – цериккельский тип. Назван по шахте озера Церик-Кель глубиной 258 м: поднимавшиеся по трещине воды выработали канал, верхняя часть которого является расширенной.

Из более чем трёх тысяч  карстовых шахт и вертикальных пещер, по мнению Э.А. Мартеля, большая часть принадлежит к первому типу. В их образовании основную роль играет корродирующее действие вод зоны нисходящей вертикальной циркуляции. Выходящее на дневную поверхность отверстие шахты сообщает её с наземной атмосферой. В шахте происходит подземное выветривание, которое усиливается наличием углекислоты. Отделённые трещинами выветривания участки стенок обрушаются под влиянием силы тяжести. Некоторые шахты начинаются в больших карстовых воронках.

Пропасти и шахты по происхождению Б. Гезе (1953) делит на пять категорий:

1. Тектонические пропасти  – образовались в результате  расширения водой диаклазов и  трещин напластования.

2. Провальные пропасти  – возникли над расширенными  неглубоко находящимися подземными  галереями с водой.

3. адсорбирующие пропасти  – возникли в результате просачивания  вод по трещинам, часто на контакте  карстующихся и некарстующихся  пород.

4. Пропасти восходящих  карстовых вод.

5. Шахты-трубки эквилибристы, извергающие и поглощающие воду  по сезонам.

В районах, которые претерпели опускание, иногда бурением вскрывают  карстовые колодцы и шахты, совершенно заполненные песком или другими  отложениями (т.е. погребённые).

 

2. Условия образования  карста

2.1  Карстующиеся горные породы и обстановки их образования

Среди карстующихся горных пород  выделяют: карбонатные (известняки, доломитизированные известняки, доломиты, писчий мел, мраморизованные  известняки и доломиты, мраморы), сульфатные (гипсы, ангидриты, переходные разности), соли (карналлит, сильвин, сильвинит  и др.). Карстообразование протекает  по-разному, в зависимости от мощности карстующихся пород, площадей, которые  они занимают, от углов наклона  этих отложений, химического состава  и степени чистоты пород. Эти  особенности в значительной степени  зависят от тектонической обстановки образования карстующихся пород. Различают  такие основные обстановки образования, распространения и условий залегания  карстующихся горных пород: I – геосинклинальная, II – переходная – краевых прогибов, III – платформенная; в особых группах IV – континентальная, и V – морская.

В складчатых зонах она  характеризуется различной дислоцированностью, мощностью и химическим составом карстующихся отложений.

Карбонатные отложения

1.  Известняки (и доломиты) в результате длительного непрерывного накопления образуют мощные толщи на значительных площадях. Большей частью характеризуются, за исключением отдельных слоёв, сравнительной однородностью химического состава и мощностью в сотни метров (до 2 – 3 км). Пример: массивные известняки нижней Перми, верхнего и нижнего карбона западного склона Урала, некоторые мощные толщи карбона Средней Азии и юры Крыма, Кавказа, верхнеэоценовые известняки Крыма.

2.  Известняки (и доломиты) в условиях длительного накопления при значительных колебательных движениях земной коры образуют толщу меньшей мощности на значительных площадях. В зависимости от условий осадконакопления толщи характеризуются большей или меньшей мощностью и разнообразием состава и свойств. Пример: карбонатные толщи докембрия, древнего палеозоя, девона и Перми Урала, средней Азии, мощные карбонатные толщи триаса и верхней юры на Северном Кавказе, третичные известняковые тощи Кавказа и другие.

3.  Кольский тип. Мраморизованные известняки и доломиты, представляющие толщи незначительной мощности, развиты на ограниченных площадях. Образовались в результате спорадического накопления карбонатных осадков среди других толщ и последующего складкообразования и метаморфизации. Пример: известняки и доломиты докембрия на Кольском полуострове и в Финляндии, некоторые силурийские и девонские известняки восточного склона Урала.

4.  Известняки рифовых массивов различной мощности, развитые на ограниченных площадях. Отличаются неправильной формой, невыдержанностью пород по простиранию и часто отсутствием слоистости. Обычно эти известняки массивны и плотны, нередко характеризуются биоморфной структурой (являются археоциатовыми, водорослевыми или содержат скелетные остатки других организмов). Встречаются и химически чистые разности известняков. Пример: кембрийские известняки Тувы.

Гипсы и ангидриты

1.  Пласты и пластообразные залежи мощностью до 100 м, реже – до 200 м, иногда разделённые пропластками некарстующихся пород, залегающие со значительными углами падения. Пример: титонские гипсы Кавказа, триасовые гипсы Альп и Апеннин.

Каменная и другие соли

1.  Галит в виде пластов, залежей небольшой мощности. Пример: третичные отложения Кавказа.

II. Переходная обстановка  краевых прогибов (с пологим, местами  относительно крутым залеганием  пород)

Карбонатные отложения

5.  Известняки и доломиты среди мощных слоистых некарбонатных толщ, образовавшиеся в условиях не особенно длительного осадконакопления. Толщи карбонатных отложений характеризуются не очень значительной мощностью и разнообразием состава и свойств. Пример: пермские карбонатные отложения Предуральского краевого прогиба в западной части Уфимско-Соликамской депрессии.

6.  Карбонатные рифовые массивы различной мощности, развитые на ограниченных площадях. Пример: пермские рифы Уфимско-Соликамской и Бельской депрессий.

Гипсы и ангидриты

2.  Пласты и пластообразные залежи мощностью в 10–20 м и до 100 м с пологими углами падения, залегающие как на значительных, так и на небольших площадях. Пример: гипсы и ангидриты пермского возраста Уфимско-Соликамской депрессии.

3.  Гипсовые шляпы соляных куполов краевых прогибов, развитые на небольших площадях. Пример: Предтаймырский краевой прогиб.

Каменная и другие соли

2.  Пласты и пластообразные залежи солей, развитые как на значительных, так и на небольших площадях. Пример: пермские соли Предуральского краевого прогиба.

3.  Соляные куполы краевых прогибов с крутыми углами падения. Пример: Предуральский (южная часть), Предтаймырский и Предпамирский краевые прогибы.

IIІ. Платформенная обстановка (с толщами осадочного плаща,  образующими пологие структуры  с почти горизонтальным залеганием)

Карбонатные отложения

7.  Известняки и доломиты в виде мощных толщ, развитых на значительных площадях. Они образовались в мало изменяющихся условиях седиментации, но несут следы колебательных движений земной коры в виде перерывов в осадконакоплении с сутурами, ститолитами и древними поверхностями карстования. Карбонатные отложения этих толщ отличаются мощностями, измеряемыми сотнями метров, и сравнительно малой изменчивостью химического состава. Пример: пермские и каменноугольные известняки востока Русской платформы в Прикамье и Башкирии, карбонатная верхнепротерозойская свита Трансвааль мощностью до 1 км в Южной Африке и др.

8.  Известняки и доломиты, образующие толщи сравнительно малой мощности вследствие чередования их с обломочными породами: отдельные слои, различные по мощности и составу. Пример: силурийские известняки Эстонии и Ленинградской области, Девонские Главного девонского поля в Воронежской области, известняки карбона Московской синеклизы, третичные известняки Причерноморской впадины, Тарханкутского, Ставропольского поднятий и др.

9.  Известняки и доломиты рифовых массивов платформ. Характеристика их в общем сходна с отложениями 6-го типа. Пример: нижнепермские рифы Уфимского вала, верхнетретичные среднесарматские рифы юго-запада Русской платформы в Приднестровье.

10.  Писчий мел, образует пласты мощностью до 100 м, развит на сравнительно больших площадях. Пример: Воронежская и Белорусская антеклиза, западный склон Украинского щита и др.

Гипсы и ангидриты

4.  Пласты и пластообразные залежи осадочного плаща платформ. Пример: третичные гипсы Подольско-Литовской, девонские Балтийской, пермские Московской и Глазовской синеклиз и др.

5.  Гипсовые шляпы соляных куполов синеклиз и других отрицательных структур платформ. Пример: Прикаспийская, Украинская и др. синеклизы.

Каменная и другие соли

4.  Пласты и пластообразные залежи в покровных отложениях платформ, главным образом в синеклизах и других отрицательных структурах. Пример: залежи соли Прикаспийской, Московской и др. синеклиз.

5.  Соляные куполы покрова платформ, развитые главным образом в синеклизах. Пример: Прикаспийская, Украинская, Вилюйская синеклизы, Убсанурская впадина.

IV. Современные поверхностные  образования континентов

В эту группу выделяют современные  поверхностные карстующиеся породы, образовавшиеся в четвертичный период и не всегда прошедшие полностью  стадию диагенеза. Как правило, имеют  небольшую площадь распространения  и весьма малую мощность.

Карбонатные отложения

11.  Известковые туфы холодных источников. Образуют довольно рыхлые пористые известняки. Площадь их невелика. Максимум десятки квадратных метров. Развиты довольно широко. Пример: Пермская область.

12.  Карбонатные травертины термальных источников. Значительно менее распространены. Обычно развиты на большей площади. Пример: травертины района Кавказских минеральных вод, которые местами закарстованы.

13.  Современные континентальные карбонатные образования – береговые известняки Австралии.

Гипсы

6. Отложения гипсовых озёр  засушливой зоны.

Каменная соль

6. Отложения соляных озёр  засушливой зоны.

Природная сода

1.  Отложения содовых озёр засушливой зоны.

V. Современная морская  обстановка

14. Карбонатные образования  современных морей и океанов  в виде коралловых рифов.

 

2.2 Водопроницаемость карстующихся  пород 

 

Водонепроницаемые горные породы карстуются только с поверхности. Но большая часть горных пород, попав  в зону выветривания, становится трещиноватой. По трещинам в массив проникают воды и атмосферный воздух, которые  взаимодействуют с растворимыми породами, вызывая ряд химических и минералогических процессов. Трещины  возникают на всех этапах жизни карстующейся осадочной толщи. Начиная с превращения  осадка в породу при процессах  диагенеза, при складкообразовании, выветривании.

Литогенетические (первичные) трещины – возникают преимущественно  при диагенезе. Наиболее важные физические изменения – потеря воды и уплотнение отложений путём уменьшения их влажности  и пористости. Эти процессы растянуты  по времени и распространяются на глубину 150–200 м. На большей глубине осадки полностью переходят в плотные осадочные породы, которые в дальнейшем крайне медленно отдают воду и уплотняются. Распространение таких трещин наиболее чётко выражено в областях с горизонтальным или слабонарушенным залеганием пород. Там, где породы смяты в складки и испытали интенсивные тектонические движения, первичные трещины в осадочных породах бывают часто замаскированы более поздней тектонической трещиннноватостью. Первичные трещины не пересекают мощных толщ пород, а тесно связаны с отдельными пластами или небольшими пачками пластов. Обычно трещины заканчиваются на границах отдельных пластов, образующих слоистость. По отношению к слоистости трещины располагаются перпендикулярно. Косо, параллельно, имеют неправильную сложную форму. Положение их зависит от литологического состава пород. Замечено, что перпендикулярные слоистости трещины характерны для известняков и доломитов, разбивают эти породы на параллелепипедные отдельности. В различных участках одного и того же пласта присутствуют трещины разных простираний. Относительно правильные отдельности приурочены к породам однородного состава. Степень заполнения трещин зависит в первую очередь от циркуляции водных растворов. Частота трещин зависит от мощности и состава пород. В гипсах, ангидритах, каменной соли они менее развиты. При залегании на некоторой глубине от земной поверхности эти породы не карстуются и даже являются водоупором. Когда движения земной коры выводят их на дневную поверхность, карст начинает интенсивно развиваться.

Информация о работе Карст. Эволюция карста