Автор работы: Пользователь скрыл имя, 26 Февраля 2012 в 17:10, курсовая работа
Развитие информационных технологий ставит перед педагогами общеобразовательных школ новые методические задачи. В рамках оказания помощи школе были проведены факультативные занятия по геоинформатике с учениками десятого класса.
Школа, в которой проводились занятия, давно подлежит ремонту.
1. Факультативная подготовка по ГИС-технологиям в школе ………… 3
2. Экологический практикум для школьников на оз. Горькое
Звериноголовского района (курорт «Сосновая роща») ……………… 4
3. Обучение геоинформатике в колледже ……………………………….. 5
4. Опыт Курганского ГУ по обучению современным
геоинформационным технологиям ……………………………………. 7
5. Геоинформационная система Нижегородского ГТУ на базе
программного продукта AutoCAD Map ……………………………… 9
6. Геоинформационное обеспечение учебных и производствен-
ных практик геологического факультета МГУ: обучение
через составление реальных ГИС-проектов …………………………. 11
7. Обучение ГИС-технологиям на геологическом факультете МГУ ….. 13
8. Геоинформационные системы на кафедре картографии СПбГУ …… 15
9. Среда получения оценок на базе ГИС – технологии как основа
обучения специалистов в области экологии ………………………….. 18
10. Содержание обучения в области геоинформационных
систем и транспортная логистика в Уральском ГУ ………………… 20
11. Геоинформационное образование в Уральской
горно-геологической академии ………………………………………. 22
12. Геоинформационные системы в учебном процессе
телекоммуникационных специальностей …………………………… 24
13. Учебно-методическое обеспечение ГИС-образования ……………... 25
14. Заключение …………………………………………………………….. 27
Литература ……………………………
КУРСОВАЯ РАБОТА
По дисциплине: "Геоинформацинные системы"
На тему: " Применение геоинформационных систем в образовании "
Воронеж 2006 г.
Содержание
1. Факультативная подготовка по ГИС-технологиям в школе ………… 3
2. Экологический практикум для школьников на оз. Горькое
Звериноголовского района (курорт «Сосновая роща») ……………… 4
3. Обучение геоинформатике в колледже ……………………………….. 5
4. Опыт Курганского ГУ по обучению современным
геоинформационным технологиям ……………………………………. 7
5. Геоинформационная система Нижегородского ГТУ на базе
программного продукта AutoCAD Map ……………………………… 9
6. Геоинформационное обеспечение учебных и производствен-
ных практик геологического факультета МГУ: обучение
через составление реальных ГИС-проектов …………………………. 11
7. Обучение ГИС-технологиям на геологическом факультете МГУ ….. 13
8. Геоинформационные системы на кафедре картографии СПбГУ …… 15
9. Среда получения оценок на базе ГИС – технологии как основа
обучения специалистов в области экологии ………………………….. 18
10. Содержание обучения в области геоинформационных
систем и транспортная логистика в Уральском ГУ ………………… 20
11. Геоинформационное образование в Уральской
горно-геологической академии ………………………………………. 22
12. Геоинформационные системы в учебном процессе
телекоммуникационных специальностей …………………………… 24
13. Учебно-методическое обеспечение ГИС-образования ……………... 25
14. Заключение …………………………………………………………….. 27
Литература …………………………………………………………………. 28
1. Факультативная подготовка по ГИС-технологиям в школе
Развитие информационных технологий ставит перед педагогами общеобразовательных школ новые методические задачи. В рамках оказания помощи школе были проведены факультативные занятия по геоинформатике с учениками десятого класса.
Школа, в которой проводились занятия, давно подлежит ремонту. В аварийном состоянии находятся перекрытия и потолки здания. Поэтому, чтобы снизить затраты на ремонтные работы с одной стороны и одновременно оценить примерную стоимость необходимых материалов была выбрана данная тема.
Вначале была осуществлена подготовка школьников к восприятию и использованию пространственно распределенной информации. Для этого пришлось обратиться к дополнительным занятиям по инженерной графике, элементам картографии и знакомству с ГИС.
Силами учеников были смоделированы поэтажные планы школы и привязаны к карте города. В качестве основы использовались чертежи этажей от 1985 года. Они оказались устаревшими, многие перегородки были перенесены, поэтому заново делались замеры и наносились на план.
В качестве векторизатора был выбран пакет AutoCAD (Autodesk), т. к. он обладает мощным графическим редактором, большим набором средств для построения и редактирования двумерных и трехмерных объектов и модель, созданная в формате AutoCAD, принимается в любых других инструментальных ГИС. Затем чертежи были импортированы в ArcView, была создана и наполнена база данных, содержащая информацию о помещениях, в том числе и фотографии помещений до ремонта. ArcView выбрана в связи с удобным интерфейсом и наглядным представлением слоев. Система позволяет решать как административные так и хозяйственные задачи, может быть включена в городскую ГИС, а также служить источником справочной информации. Ученики получили новые знания и опыт работы над проектом в коллективе.
Результаты работы представлялись на районном конкурсе школьных работ и были оформлены в виде школьных диссертаций.
Выполнение указанной работы потребовало дополнительной подготовки в следующих направлениях и объеме:
Элементы инженерной и компьютерной графики.
Проекционное черчение в объеме освоения работы с поэтажными планами. Основные положения ЕСКД (Форматы, масштабы, виды, разрезы, сечения, нанесение размеров) – 12 час.
Знакомство с графическим пакетом AutoCAD как инструментом геометрического моделирования и векторизации поэтажных планов – 18 час.
Элементы картографии и основы ГИС
Элементы картографии – 6 час.
Введение в ГИС (Понятие ГИС. Области и примеры применения) – 4 час.
Изучение инструментальной системы ArcView (Работа с растровыми и векторными слоями. Таблицы. Запросы. Тематическое картографирование) – 12 час.
Элементы дизайна и инструментальные средства презентации результатов
Photoshop и PowerPoint – 10 час.
2. Экологический практикум для школьников на оз. Горькое
Звериноголовского района (курорт «Сосновая роща»)
Практикум проводился под эгидой областного экологического центра учащихся ГлавУНО Курганской области. В ландшафтно-экологическую группу входит шесть учащихся 8–10-х классов. Основные цели работы — построение и анализ трех карт на район курорта и озера: ландшафтной (до уровня типов урочищ), сохранных и редких ландшафтов, антропогенной нагрузки.
Оборудование: компьютер (в стационаре) и приемник GPS E-Trex с кабелем для соединения с PC. Программное обеспечение: Mapinfo Professional, Geographic Tracker (Special MapInfo Edition), WayPoint+, GPS TrackMaster.
Ввод данных осуществляется напрямую в MapInfo с помощью протокола NMEA, программ Geographic Tracker и текстовых файлов WayPoint+ и GPS TrackMaster. По линиям траков строились площадные объекты и выносились точечные, проводились зонирование, районирование. В результате наложения карт и с помощью специальных инструментов был выполнен географический анализ.
Методика работы в полевых условиях: маршрутное исследование, включающее изучение ландшафтов с одновременным выявлением слабоизмененных природных комплексов и, наоборот, видов и пространственных очагов человеческого воздействия на геосистемы.
При движении по маршруту приемник GPS постоянно включен, он записывает трак — линию движения человека с прибором. Таким образом, при фиксации контуров ландшафтов или очагов антропогенной нагрузки (размером более 30 м) достаточно «обойти» контур по его границе и затем с необходимой точностью отобразить его в компьютере.
Данная функция E-Trex и других навигационных приемников бесценна для географа-ландшафтоведа, которому в рамках карты-основы землепользования постоянно приходится отделять друг от друга фации, составляющие урочище. Так, даже на лесохозяйственных картах невозможно увидеть разграничения, скажем, между бором мертвопокровным и травяным (не позволяет это сделать и большинство данных ДЗЗ). Теперь оконтуривание фаций, которое зачастую приходилось делать почти на глаз, с помощью многократных измерений рулетками, что занимало длительное время, выполняется в два приема — «обход» контура с прибором и установка путевой точки в месте замыкания контура, обозначающей тип фации (например, БТЗ-2 — бор травяной злаковый, точка № 1). Стандартно приемник записывает шесть символов (GPS12-XL — до 16 букв), остальное описание выполняется традиционно — в полевом дневнике (или в карманном компьютере). Полностью исключается необходимость в трудоемкой и занимающей много времени операции — географической привязке маршрутных точек. При фиксации небольших объектов (5–15 м в диаметре) применяется способ путевых точек (WayPoints), когда каждому такому объекту (кострище, микросвалка, отдельно стоящее дерево и т. п.) соотносится точка, обозначенная условным знаком из базы прибора и имеющая уникальный идентификатор (Kost1, Sval16, Derev5).
Значительно упрощается работа по ландшафтной съемке при использовании двух приборов. В этом случае нет необходимости в полном обходе контура, во-вторых, появляется возможность фиксации протяженных, параллельных друг другу границ. Поясним это на примерах.
1. При использовании одного прибора для описания контура целинной типчаково-ковыльной степи работа выполняется в следующей последовательности: установка путевой точки, затем полный обход контура с возвратом в начальную точку.
При использовании двух приборов выполняется установка путевой точки на одном из приборов с одновременный обходом контура с двух сторон с перекрещиванием траекторий в конце обхода.
Время, затрачиваемое на операцию, сокращается в 3 раза.
2. При использовании одного прибора в процессе изучения расстояния от границы пашни до кромки воды в озере приходится постоянно менять траекторию, переходя от кромки воды к границе распашки. Кроме того, необходима установка множества путевых точек в местах перехода от одной границы к другой. Результат такой работы неточный — траектории получаются не сплошные, а с разрывами.
При использовании двух приборов постоянно фиксируются две параллельные траектории. Время, затраченное на работу, сокращается примерно в 2 раза, и заметно улучшается точность результатов.
В ходе практикума школьники освоили прибор за 2 ч, а к концу первого дня уже свободно заносили в приемник путевые точки, выполняли их описание. Чуть больше времени заняло обучение операции ввода данных из GPS в ГИС и, конечно, их географическому представлению и анализу. К концу шестидневного практикума школьники самостоятельно построили все искомые карты, о чем с удовольствием доложили на заключительной конференции.
3. Обучение геоинформатике в колледже
Среди причин, сдерживающих развитие геоинформационных технологий в России, — финансовых, правовых, организационных, режимных и др. — подготовка кадров занимает на одно из первых мест. От уровня подготовки специалистов, в том числе в области геоинформатики, во многом зависит и решение многих других проблем. Необходимость совершенствования системы геоинформационного образования осознается многими педагогами и специалистами, пока, однако, работа держится на инициативе отдельных личностей, занимающихся самообразованием.
До начала изучения геоинформатики учащиеся должны освоить основы: геодезических измерений, в том числе современные методы сбора информации о земной поверхности и явлениях; картографии, в том числе цифровой информатики.
Программа курса «Геоинформатика» в колледже должна содержать разделы:
Введение, где рассматриваются:
определение и терминология ГИС;
области применения ГИС-технологий;
Организация данных в ГИС:
пространственные данные. Регистрация. Топология;
атрибутивная информация в ГИС. Базы данных;
связь пространственных и атрибутивных данных;
редактирование данных в ГИС;
импорт-экспорт графических и атрибутивных данных.
Функциональные возможности современных ГИС:
выбор объектов по пространственным и атрибутивным данным. SQL-запросы;
задачи, решаемые по выбранным объектам;
пространственный анализ. Анализ цветного растрового изображения;
3D-изображение, GRID, TIN-модели;
задачи, решаемые с использованием объемного изображения;
организация работы в локальной сети. Удаленный доступ;
перспективы развития ГИС.
В заключение курса следует осветить проблемные вопросы традиционных подходов и решений на основе ГИС-технологий. По такому тематическому плану идет становление преподавания геоинформатики в Читинском лесотехническом колледже (ЧТЛК) на специальности «прикладная геодезия». В процессе обучения используются рабочие и демонстрационные версии программ векторизации, CAПР, обработки и анализа векторной и растровой графики. Для контроля знаний по предмету предлагается ответить на теоретический вопрос и подготовить практический пример, основанный на использовании стандартных функций ArcView GIS.
Приходится сожалеть, что в колледже для изучения геоинформатики, в отличие от других базовых дисциплин, отводится минимум учебного времени -60 ч, в том числе 20 - на практику. Предусмотренная форма контроля результата обучения зачет - не повышает значимости предмета.
Существенную помощь в организации практических занятий оказывает колледжу Забайкальское АГП: цифровыми картами, аэро- и космическими снимками и ГИС, разработанными специалистами предприятия. Преподает предмет один из специалистов предприятия. Часть студентов проходит производственную практику на Забайкальском АГП. Эффективность обучения намного повышается, когда практические занятия проводятся с использованием картографических материалов территории края, района, города, села. Многочисленные примеры по запросам, соединению и связыванию таблиц, геокодированию, агрегированию, буферизации, геопроцессингу, построению профилей, поверхностей, подсчету площадей и объемов, выбору площадок, определению видимостей учитывают специфику предмета.
Преподавание осложняется из-за отсутствия учебной литературы. Очевидной становится необходимость подготовки российского учебника по геоинформатике, соответствующего современному уровню развития ГИС-технологий. ГИС-Ассоциация могла бы выступить инициатором его создания.
4. Опыт Курганского ГУ по обучению современным
геоинформационным технологиям
Полноценное современное образование в области геоинформатики невозможно без изучения теории и практики геоинформационных систем, методов и технологий создания пространственных данных, в том числе с помощью дистанционного зондирования Земли (ДДЗ) и навигационных систем.
Одной из главных проблем, тормозящих развитие геоинформационного образования, является высокая (для государственных учебных заведений) стоимость программно-аппаратного обеспечения полного комплекса работ. По грубой оценке, стоимость комплекта из одного приемника Trimble, нескольких сцен, полученных SPOT, и лицензии ERDAS
Imagine (ERDAS, Inc., США) и ArcGIS (ESRI, Inc., США) составляет около 60–70 тыс. дол., а комплекта из одного приемника Ashtech или Javad, нескольких снимков, полученных Landsat, одной инсталляции ER Mapper (Earth Resourse Mapping, Ltd., Австралия) и MapInfo Professional (MapInfo Corp., США) — около 50 тыс. дол. (без учета стоимости цифровых карт и компьютерного оборудования). Более того, для успешного учебного процесса необходимо иметь как минимум три приемника, а также программное обеспечение для функционирования 10–15 рабочих мест.
Ряд крупных компаний (ESRI, Inc., Intergraph Corp., США) имеют программы работы с вузами, оказывают им широкую поддержку, но это пока, скорее, исключение, чем правило, и всю технологическую программно-аппаратную линейку (по пятилетнему опыту работ) такая политика вряд ли обеспечит (тем более, что основные финансовые ресурсы придется потратить на приемники GPS).
Еще одна проблема геоинформационного образования — сложность освоения аппаратуры и программного обеспечения, которая большой частью субъективна, но является, прежде всего, психологическим барьером (в большей степени для преподавателей, а не для студентов или школьников). Однако «с нуля», самостоятельно геодезический приемник GPS, сопровождающее его программное обеспечение, профессиональные пакеты обработки данных ДЗЗ и ГИС быстро не освоишь.
Есть ли решение этих проблем? Не существует ли какого-либо щадящего финансового и образовательного варианта? Специалисты Курганского государственного университета считают, что в качестве одного из вариантов можно предложить следующий: навигационные GPS Garmin — многозональные сканерные снимки MODIS, ASTER (Terra) и снимки, полученные со спутников «Ресурс» и «Метеор» (МСУ-Э, МСУ-СК) — программные продукты ИТЦ «СканЭкс» (ScanViewer, ImageTransformer, ScanEx-NeRIS) — ГИС GeoMedia Professional (Intergraph Corp.) и MapInfo Professional (MapInfo Corp.).
Большинство программных продуктов передано в университет для тестирования и обучения по договоренности с производителями, а Mapinfo Professional получено победителем конкурса студенческих работ «ГИС-проектў2001», ежегодно проводимого ГИС-Ассоциацией. Снимки со спутников Terra распространяются бесплатно, собственный архив российских снимков сформирован на базе сотрудничества и взаимопомощи с региональным информационно-аналитическим центром, принимавшим их в течение 1997–1998 гг., и ИТЦ «СканЭкс».
Для университета самым сложным в финансовом отношении моментом долгое время оставалось приобретение спутниковых приемников, пока не открыли для себя возможности и преимущества навигационных GPS. Получив в компании «Навиком» 30% скидку, мы смогли купить два навигационных приемника — E-Trex и GPS-12XL за 350 дол. (с кабелями для подключения к PC). Эти затраты на два порядка меньше стоимости прибора геодезической точности. Именно поэтому, не ввязываясь в давний и бесперспективный спор, какой программный продукт лучше в области обработки данных ДЗЗ и ГИС, сосредоточим внимание на одной из базовых, наиболее современных составляющих ГИС — получении, обработке и применении GPS-данных. Рассмотрим этот вопрос на основе использования навигационных приемников и проиллюстрируем их применение на конкретных примерах.
Главная цель навигационных GPS, как ясно из названия, — навигация, ориентирование при движении по маршруту, возврат в нужную точку, движение по заданной траектории, запоминание пройденного пути для повторного полного или частичного прохождения. Однако, как показал наш опыт, приборы могут с успехом применяться для решения некоторых картографических и геоинформационных задач. Этому способствует:
наличие интерфейса двусторонней связи с PC;
использование программ предварительной обработки геодезических определений с помощью GPS для применения в ГИС (OziExplorer, WayPoint+, GPS TrackMaster и т. д.);
возможность большинства приемников работать по протоколу NMEA 0183, воспринимаемого некоторыми ГИС (MapInfo Professional, ArcView GIS);
поддержка большого числа эллипсоидов, систем координат (в том числе с возможностью задания собственных параметров);
отмена режима селективного доступа, увеличившая гарантированную точность определения координат навигационными GPS до 15 м.
Естественно, навигационные GPS не могут заменить геодезические приборы при топографических и кадастровых работах, но могут быть использованы для решения большинства природно-ресурсных задач: в лесной, водной отраслях и в сельском хозяйстве. Мониторинг и анализ большинства региональных, социальных и природных явлений могут осуществляться с опорой на данные, полученные с помощью навигационных GPS. И если вышеуказанные применения вообще-то формально, юридически необоснованны (приборы не сертифицированы для картографических целей, поэтому могут быть использованы лишь дополнительно или при проведении работ «для себя»), то для образовательного процесса они просто созданы — чрезвычайно просты в освоении и работе, компактны, мало весят, удобны, эстетичны.
Следует отметить, что из-за непродолжительного времени работы с навигационными GPS раскрыты не все их преимущества (равно как и недостатки), однако, уже сейчас можно утверждать, что применение таких приборов в образовательном процессе, как в вузе, так и в школе вполне оправдывает себя.
В ближайших планах коллектива университета — использование навигационных приемников GPS при проведении полевых практик и дипломных работ по социально-географическим проблемам, в частности по поведенческой географии.
5. Геоинформационная система Нижегородского ГТУ на базе
программного продукта AutoCAD Map
Нижегородский государственный технический университет (НГТУ) уделяет серьезное внимание подготовке студентов в области геоинформационных технологий. Силами студентов и преподавателей созданы первые геоинформационные системы и по самому НГТУ. Так в 1999 году завершен пилотный проект информационной системы НГТУ в технологии ГеоГрафGeoDraw (ЦГИ ИГРАН), в котором нашли полное отражение богатая география, структура и история вуза. Для НГТУ, как для технического вуза, интересной сферой приложения геоинформационных технологий являются инженерные приложения. В 2000 году начат новый проект геоинформационной системы НГТУ, который рассчитан на поддержку эксплуатации инженерных коммуникаций территории и сооружений вуза, на решение задач хозяйственного управления вузом на уровне ректората, деканатов, кафедр, а также на решение задач охраны труда на рабочих местах. Проект рассчитан на несколько лет.
Пространственная модель НГТУ для ГИС включает в себя 3 уровня и создается, соответственно, на основе: 1)топопланов М1:2000 и М1:500; 2)проектов инженерных коммуникаций и поэтажных планов корпусов НГТУ; 3)планов инженерно-технического оснащения и обстановки каждого отдельного помещения. При создании ГИС НГТУ наряду с традиционными плоскими моделями используются и трехмерные модели. Несомненно, наличие в системе трехмерных моделей должно расширить ее возможности, но, с другой стороны, оно может сделать систему и необоснованно сложной, и предъявить к инструментальной программной среде неразрешимо высокие требования. Выбран путь экспериментального решения указанной проблемы. Трехмерное моделирование используется прежде всего для инженерных коммуникаций зданий и сооружений НГТУ, а также для инженерных коммуникаций территории, рельефа местности, обстановки помещений. Весьма полезным для инженерно-технических применений оказывается аппарат ГИС, предназначенный решения топологических задач. Широкое применение топологических задач, включая 3D-модели, предусматривается и ГИС НГТУ.
В качестве инструментальной геоинформационной системы для этой работы выбрана система AutoCAD Map (Autodesk). Эта система выбрана благодаря следующим обстоятельствам:
1. модель, созданная в формате AutoCAD, принимается в любых других инструментальных ГИС;
2. AutoCAD Map обеспечивает трехмерное моделирование объектов ГИС;
3. AutoCAD Map обеспечивает связывание элементов 3D-модели с внешней базой данных, а также выгрузку численных значений атрибутов и полей внутренних таблиц модели во внешние базы данных;
4. AutoCAD Map обеспечивает с небольшими ограничениями решение стандартных топологических задач и на 3D-модели;
5. AutoCAD Map позволяет расширить круг решаемых задач и возможности системы за счет использования в составе Land Development Desktop (LDD);
6. существуют и разрабатываются приложения на основе AutoCAD Map для предприятий эксплуатирующих инженерные коммуникации;
7. AutoCAD Map имеет аппарат конвертирования геоинформационных моделей в SDF-формат для использования в Internet/Intranet через Autodesk MapGuide (Server, Author, Viewer).
Благодаря последнему обстоятельству параллельно с основной системой создается ее Intranet-вариант в технологии MapGuide.
Для обеспечения функций охраны труда моделируются условия труда: внутренняя планировка и обстановка помещений, рабочие места персонала (и студентов) и их техническое и инженерное оснащение (освещение, водопровод, канализация, вентиляция, газоснабжение, компьютерные сети и т.д.). Создаются базы данных, содержащие показатели условий труда на рабочих местах.
На сегодняшний день есть работоспособные и функционально полноценные фрагменты системы:
модель рельефа и инженерных коммуникаций основной территории НГТУ;
модели 6 учебных корпусов и внутренних инженерных коммуникаций ряда корпусов;
модели внутренней обстановки помещений и рабочие места для ряда кафедр.
Анализ создания и опытной эксплуатации системы показал: увеличение объема работ по моделированию трехмерных объектов ГИС - значительное; трехмерные объекты ГИС в среде AutoCAD Map жизнеспособны, доступны для решения топологических задач и приносят практическую пользу.
6. Геоинформационное обеспечение учебных и производственных
практик геологического факультета МГУ: обучение через
составление реальных ГИС-проектов
Современные требования к организации Государственных геологосъемочных работ масштаба 1:200 000 предполагают использование компьютерных технологий (включая ГИС-технологии), начиная с самых первых этапов работ. Однако инструктивными документами Министерства Природных Ресурсов не оговаривается полная технологическая цепочка обработки геологических данных и в принципе не требуется составление полноценного ГИС-проекта – достаточно предоставление баз данных в форматах АДК и цифровых моделей комплекта геологических карты в форматах ArcInfo. Такое положение не может устраивать геологов-исполнителей, поскольку огромная рутинная работа не находит выхода на них самих, не позволяет свободно ориентироваться в море фактического материала (в сотнях точек наблюдения, буровых скважин, горных выработок, зарисовок, фотографий, в тысячах фаунистических определений, в десятках тысяч анализов горных пород, в необозримом количестве описаний рудных объектов и других материалов) как из-за громоздкости применяемых стандартных программных средств (АДК и др.), так и из-за отсутствия в этом
ПО удобных средств организации связей между разнородными данными, а также гипертекстовых документов. Т.е. цифровое представление геологических данных пока что является самоцелью, а не методом работы самих геологов. Отсутствие идеологической базы использования компьютерных методов в производстве сильно снижает эффективность обучения студентов, т.к. они видят в ГИС-технологиях почти исключительно оформительскую функцию. Преподавание же предмета только на учебных примерах еще менее эффективно.
Все эти соображения заставили нас еще на этапе проектирования работ по Государственной геологической съемке масштаба 1:200 000 территории Южного Урала разработать рациональную методику информационного обеспечения всех этапов получения, обработки, анализа и использования геологических данных: от позиционирования координат полевых точек наблюдения GPS-приемниками до создания ГИС-проекта в среде ArcView, увязанного с гипертекстовой информации. Фактически, речь идет о создании полноценной среды геологических исследований, объединяющей как пополняемые, онлайновые базы данных, так и инструменты их анализа.. Проводимые на Южном Урале исследования являются базовыми для производственных практик студентов-геологов, поэтому данная работа была задумана одновременно и как программа комплексного обучения студентов, которые (помимо собственно геологических маршрутных и других работ) для начала оцифровывали различные карты геологического содержания, вводили текстовую информацию, заполняли базы данных, затем – компоновали материал в ГИС-проектах, создавали гипертекстовые описания, а в конце – приобретали навыки полноценной работы с готовыми проектами. В целом технологическая цепочка выглядит следующим образом.
По окончании полевого геологического маршрута в распоряжении геолога оказывается следующая информация: записи в полевой книжке, точки определения координат прибором спутниковой привязки, номера проб химических анализов, образцов и шлифов горных пород, полевые зарисовки и фотографии (благодаря использованию электронного фотоаппарата, они готовы к использованию по окончании маршрута).
Геоинформационная система как нельзя более подходит для хранения и объединения такой разнородной информации. Информация из полевых дневников заносится в текстовый файл, которые позже преобразуется в HTML или HLP файл (см. ниже), информация с приборов спутниковой привязки скачивается на компьютер (в текстовом формате, который впоследствии преобразуется в *.dbf файл). Полевые зарисовки сканируются, электронные фотоизображенния переносятся в компьютер, файлам изображения присваиваются номера точек наблюдений. Далее, после загрузки тем точек наблюдения в вид ArcView, в специально разработанном диалоговом окне редактируются данные по каждой конкретной точке – вводится тип карты, тип точки наблюдения, тип геологического объекта, наличие проб на фауну, на силикатный анализ и т.д.). Во избежание ошибок все значения выбираются из выпадающих списков. По окончании заполнения таблицы атрибутивной информации система тестируется на взаимодействие программ для просмотра всех компонентов. Широкие аналитические и информационные возможности предлагаемых ГИС-проектов связаны прежде всего с развитой атрибутивной базой тем полевых наблюдений. В полном виде таблица атрибутов точек наблюдений содержит 25 полей, которые заполняются либо автоматически, с помощью специально разработанных скриптов, либо с помощью внутренних средств GIS ArcView, либо в интерактивном режиме с помощью разработанных av диалогов, и лишь в редких случаях полностью вручную.
Географические и геологические привязки объектов наблюдений записываются в таблицу атрибутов автоматически, с помощью скриптов определения пространственной принадлежности, входящих в стандартные пакеты ArcView. По такой технологии были построены полигональные покрытия топографических листов масштаба 1:50 000 (поле Sheet), речных бассейнов (Valley), картируемых геологических единиц (Background), площадных четвертичных образований (Q-areal), магматических массивов (Massif). По мере развития проекта количество полей привязок и соответствующих мишеней будет увеличиваться, а аналитические возможности ГИС – расширяться. Прежде всего будут введены тектонические и структурно-геологические атрибуты, а затем минерагенические, экологические, геофизические и пр.
В информационном обеспечении текущих геолого-съемочных работ огромное значение имеют внешние базы данных, включающие собственные и литературные описания объектов наблюдения, обобщенные характеристики геологических и других картируемых тел, сведенные в отчеты, статьи, монографии, а также геологическую графику разного содержания, фотографии обнажений и ландшафтов, видео и аудио-информацию. Удобное использование этих информационных массивов предполагает объединение их в гипертексты. Поскольку стандартные hot links в ArcView гипертекстовых ссылок не поддерживают, были разработаны два метода привязки внешней информации.
Простой способ заключается в использование html формата для записи текстовых сообщений и обычной процедуры html ссылок (с помощью закладок) на требуемые фрагменты текста. В качестве закладки используется номер точки. Удобство этого способа заключается в простоте подготовки исходных массивов текстовых сообщений, которые реально могут храниться в виде единого, легко дополняемого html файла. Трудность метода в том, что по мере разрастания внешнего текста, системные требования к компьютеру резко увеличиваются.
Другой способ заключается в подготовке внешней базы данных в виде гипертекстовой системы стандартных файлов подсказки Windows. Этот метод значительно более трудоемок, но имеет несколько выразительных преимуществ. Это минимальные требования к компьютерам, возможность представления материалов разного содержания и из разных источников в различно оформленных окнах, возможность использования гипертекста в качестве самостоятельного, хорошо структурированного информационного ресурса, легкость подключения текстовой, видео и аудиоинформации в любых удобных форматах. Сложность метода прежде всего в том, что добавление новой информации в гипертекстовую систему требует перекомпилирования всего исходного материала. Выход в гипертекст также осуществляется через пользовательские скрипты «горячей связи» с экранных точечных, линейных и полигональных тем.
7. Обучение ГИС-технологиям на геологическом факультете МГУ.
Кафедре региональной геологии и истории Земли готовит специалистов-геологов по специальности "Геологическая съемка и поиск месторождений полезных ископаемых". По требованиям Министерства природных ресурсов все отчеты по геологической съемке должны представляться в виде ГИС-системы. Поэтому на кафедре, готовящей специалистов по геологической съемке и картированию были разработаны учебные курсы для подготовки специалистов в области применения ГИС в геологии.
Цикл учебных курсов продолжается 4 семестра, с четвертого по седьмой (2-4 курс).
Курс предусматривает, что к его началу студенты уже умеют уверенно обращаться с компьютером и владеют программами электронных таблиц, векторными и растровыми редакторами.
Для лучшего усвоения технологии создания ГИС-проектов в основу курса положен принцип самостоятельного составления студентом ГИС на по полному циклу - от бумажной геологической карты до полностью сделанной ГИС и ее распечатки. Опыт проведения курса показал, что наилучшее усвоение материала происходит при работе студента на индивидуальном компьютере со своим индивидуальным ГИС-проектом.
Первый семестр обучения ГИС-технологиям ㅵ㜰㼷畜〱㈸尿ㅵ㜰㼷畜〱〹