Автор работы: Пользователь скрыл имя, 19 Марта 2012 в 10:59, реферат
Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.
Развивающие игры в формировании элементарных математических способностей у детей дошкольного возраста.
Введение.
Работать с детьми 4-5 лет - одно удовольствие. Они уже достаточно самостоятельны в быту и теперь проявляют самостоятельность в суждениях. Они очень любознательны. Взрослый становится интересен им как источник новой информации. Они лучше видят и чувствуют переживания и настроения и сверстников, и взрослых, могут приятно удивить вас своими проявлениями заботы и понимания вашего состояния. Позвольте детям иногда заботиться о вас, сочувствовать и помогать вам. Покажите им, что они уже достаточно большие и могут сделать для вас что-то по-настоящему важное, приятное и нужное.
В этом возрасте сознание детей выходит за пределы их «наличного бытия», появляется временная перспектива (дифференцируется прошлое, будущее и настоящее) и пространственная перспектива- их интересует жизнь в Африке, в космосе, в океане.
План сознания детей продолжает быстро расширяться. Он включает уже достаточно глубокий временной план прошлого и будущего. Сформирована речь, ребёнок свободно пользуется ею как средством общения и познания. Вместе с тем по-прежнему велика роль образной формы подачи разнообразной информации.
Возрастает потребность ребёнка в построении связной картины мира. Существуют два типа подобной связности: научная и морфологическая.
Теперь, когда речь в основном сформирована, она может выполнять не только коммуникативную, как в 3-4 года, но и мыслительную функцию, выражать мысль ребёнка и стать опорой новой формы его мышления- рассуждения. Познавательная деятельность приобретает новую форму: ребёнок активно впитывает информацию, может её продуктивно усваивать, запоминать и оперировать ею. Мышление становится наглядно-образным.
Если в 3-4 года ребёнок имел потребность в уважении взрослым проявлений его воли, теперь ему необходимо уважение к его самостоятельной, делающей первые шаги мысли. Он стремится высказать свои суждения, идеи, нуждается во внимании к ним со стороны взрослого, в одобрении его стремления понять что-то, в поддержке. В данном случае нет необходимости стремиться немедленно дать ребёнку «правильные» ответы на все возникающие у него вопросы- гораздо полезнее создать условия для разворачивания его собственных размышлений.
Теперь от взрослых требуется:
- широко использовать иллюстрации к книгам, диафильмы, телепередачи познавательного направления и т.п.;
- как можно больше рассказывать детям о жизни в разных местах и в разные времена;
- внимательно и заинтересованно выслушивать рассуждения детей, никогда их не критикуя;
- ставить развивающие вопросы.
Упор в методике работы с детьми данного возраста делается на образном начале, а также сделан шаг в направлении" реабилитации" в глазах педагогов ассоциативного мышления, которое, как известно, является одним из механизмов творческого процесса. Однако, увлеченные идеалами научности, строгости, логичности, мы нередко забываем, что мышлению для того, чтобы быть по-настоящему продуктивным, необходимы такие качества, как подвижность и гибкость, способность устанавливать неожиданные связи, находить неожиданные аналогии и таким путём двигаться по пути познания нового. Говоря о развитии творческого мышления, мы часто забываем о таком важном его факторе, как умение образовывать ассоциации.
Л.А.Венгер, О.М.Дьяченко предлагают осуществлять математическое развитие на занятиях и закреплять в разных видах детской деятельности, в том числе, в игре.
В процессе игр закрепляются количественные отношения (много, мало, больше, столько же), умение различать геометрические фигуры, ориентироваться в пространстве и времени.
Особое внимание уделяется формированию умения группировать предметы по признакам (свойствам), сначала по одному, а затем по двум (форма и размер).
Игры должны быть направлены на развитие логического мышления, а именно на умение устанавливать простейшие закономерности: порядок чередования фигур по цвету, форме, размеру. Этому способствуют и игровые упражнения на нахождение пропущенной в ряду фигуры.
Должное внимание уделено развитию речи. В ходе игры воспитатель не только задаёт заранее подготовленные вопросы, но и непринуждённо разговаривает с детьми по теме и сюжету игры, содействует вхождению ребёнка в игровую ситуацию. Педагог использует потешки, загадки, считалки, фрагменты сказок. Игровые познавательные задачи решаются с помощью наглядных пособий.
Необходимым условием, обеспечивающим успех в работе, является творческое отношение воспитателя к математическим играм: варьирование игровых действий и вопросов, индивидуализация требований к детям, повторение игр в том же виде или с усложнением. Необходимость современных требований вызвана высоким уровнем современной школы к математической подготовке детей в детском саду в связи с переходом на обучение в школе с шести лет.
Математическая подготовка детей к школе предполагает не только усвоение детьми определённых знаний, формирование у них количественных пространственных и временных представлений. Наиболее важным является развитие у дошкольников мыслительных способностей, умение решать различные задачи.
Воспитатель должен знать не только как обучать дошкольников, но и то, чему он их обучает, то есть ему должна быть ясна математическая сущность тех представлений, которые он формирует у детей. Широкое использование специальных обучающих игр так же важно для пробуждения у дошкольников интереса к математическим знаниям, совершенствования познавательной деятельности, общего умственного развития.
Выделившись из дошкольной педагогики методика формирования элементарных математических представлений стала самостоятельной научной и учебной областью. Предметом её исследования является изучение основных закономерностей процесса формирования элементарных математических представлений у дошкольников в условиях общественного воспитания. Круг задач, решаемых методикой, достаточно обширен:
- научное обоснование программных требований к уровню развития количественных, пространственных, временных и других математических представлений детей в каждой возрастной группе;
- определение содержания материала для подготовки ребёнка в детском саду к усвоению математики в школе;
- совершенствование материала по формированию математических представлений в программе детского сада;
- разработка и внедрение в практику эффективных дидактических средств, методов и разнообразных форм и организация процесса развития элементарных математических представлений.
Теоретическую базу методики формирования элементарных математических представлений у дошкольников составляют не только общие, принципиальные, исходные положения философии, педагогики, психологии, математики и других наук. Как система педагогических знаний она имеет и свою собственную теорию, и свои источники. К последним относятся:
- научные исследования и публикации в которых отражены основные результаты научных поисков (статьи, монографии, сборники научных трудов и т.д.);
- программно-инструктивные документы ("Программа воспитания и обучения в детском саду", методические указания и т.д.);
- методическая литература (статьи в специализированных журналах, например, в "Дошкольном воспитании", пособия для воспитателей детского сада и родителей, сборники игр и упражнения, методические рекомендации и т.д.);
- передовой коллективный и индивидуальный педагогический опыт по формированию элементарных математических представлений у детей в детском саду и семье, опыт и идеи педагогов-новаторов.
Обучение ведёт за собой развитие. В условиях рационально построенного обучения, учитывая возрастные возможности дошкольников, можно сформировать у них полноценные представления об отдельных математических понятиях. Обучение при этом рассматривается как непременное условие развития, которое в свою очередь становится управляемым процессом, связанным с активным формированием математических представлений и логических операций. При таком подходе не игнорируется стихийный опыт и его влияние на развитие ребёнка, но ведущая роль отводится целенаправленному обучению.
Современные требования к математическому развитию детей дошкольного возраста.
Дети четырёх лет активно осваивают счёт, пользуются числами, осуществляют элементарные вычисления по наглядной основе и устно, осваивают простейшие временные и пространственные отношения, преобразуют предметы различных форм и величин. Ребёнок, не осознавая того, практически включается в простую математическую деятельность, осваивая при этом свойства, отношения, связи и зависимости на предметах и числовом уровне.
Объём представлений следует рассматривать в качестве основы познавательного развития. Познавательные и речевые умения составляют как бы технологию процесса познания, минимум умений, без освоения которых дальнейшее познание мира и развитие ребёнка будет затруднительно. Активность ребёнка, направленная на познание, реализуется в содержательной самостоятельной игровой и практической деятельности, в организуемых воспитателем познавательных развивающих играх.
Взрослый создаёт условия и обстановку, благоприятные для вовлечения ребёнка в деятельность сравнения, сосчитывания, воссоздания, группировки, перегруппировки и т.д. При этом инициатива в развёртывании игры, действия принадлежит ребёнку. Воспитатель вычленяет, анализирует ситуацию, направляет процесс её развития, способствует получению результата.
Ребёнка окружают игры, развивающие его мысль и приобщающие его к умственному труду. Например, игры из серии: "Логические кубики", "Уголки", "Составь куб" и другие; из серии: "Кубики и цвет", "Сложи узор", "Куб-хамелеон" и другие.
Нельзя обойтись и без дидактических пособий. Они помогают ребёнку вычленить анализируемый объект, увидеть его во всём многообразии свойств, установить связи и зависимости, определить элементарные отношения, сходства и отличия. К дидактическим пособиям, выполняющим аналогичные функции, относятся логические блоки Дьенеша, цветные счётные палочки (палочки Кюизенера), модели и другие.
Играя и занимаясь с детьми, воспитатель способствует развитию у них умений и способностей:
- оперировать свойствами, отношениями объектов, числами; выявлять простейшие изменения и зависимости объектов по форме, величине;
- сравнивать, обобщать группы предметов, соотносить, вычленять закономерности чередования и следования, оперировать в плане представлений, стремиться к творчеству;
- проявлять инициативу в деятельности, самостоятельность в уточнении или выдвижении цели, в ходе рассуждений, в выполнении и достижении результата;
- рассказывать о выполняемом или выполненном действии, разговаривать с взрослыми, сверстниками по поводу содержания игрового (практического) действия.
Основные представления, познавательные и речевые умения, которые осваиваются детьми 4-5 лет в процессе овладения математическими представлениями:
СВОЙСТВА.
Представления.
Размер предметов: по длине (длинный, короткий); по высоте (высокий, низкий); по ширине (широкий, узкий); по толщине (толстый, тонкий); по массе (тяжёлый, лёгкий); по глубине (глубокий, мелкий); по объёму (большой, маленький).
Геометрические фигуры и тела: круг, квадрат, треугольник, овал, прямоугольник, шар, куб, цилиндр.
Структурные элементы геометрических фигур: сторона, угол, их количество.
Форма предметов: круглый, треугольный, квадратный. Логические связи между группами величин, форм: низкие, но толстые; найти общее и различное в группах фигур круглой, квадратной, треугольной форм.
Связи между изменениями (сменой) основания классификации (группировки) и количеством полученных групп, объектов в них.
Познавательные и речевые умения. Целенаправленно зрительно и осязательно двигательным способом обследовать геометрические фигуры, предметы с целью определения формы. Попарно сравнивать геометрические фигуры с целью выделения структурных элементов: углов, сторон, их количества. Самостоятельно находить и применять способ определения формы, размера предметов, геометрических фигур. Самостоятельно называть свойства предметов, геометрических фигур; выражать в речи способ определения таких свойств, как форма, размер; группировать их по признакам.
ОТНОШЕНИЯ.
Представления.
Отношения групп предметов: по количеству, по размеру и т.д. Последовательное увеличение (уменьшение) 3-5 предметов.
Пространственные отношения в парных направлениях от себя, от других объектов, в движении в указанном направлении; временные - в последовательности частей суток, настоящем, прошедшем и будущем времени: сегодня, вчера и завтра.
Обобщение 3-5 предметов, звуков, движение по свойствам - размеру, количеству, форме и др.