Основные понятия, описание и классификация игр

Автор работы: Пользователь скрыл имя, 22 Ноября 2012 в 01:19, реферат

Описание

Игра – это действительный или формальный конфликт, в котором имеется по крайней мере два участника (игрока), каждый из которых стремится к достижению собственных целей.
Допустимые действия каждого из игроков, направленные на достижение некоторой цели, называются правилами игры.
Игра называется парной, если в ней участвуют два игрока, и множественной, если число игроков больше двух. Далее будем рассматривать только парные игры. В такой игре участвуют два игрока - A и B, интересы которых противоположны. Под игрой (процессом игры) будет понимать ряд действий со стороны A и B.
Количественная оценка результатов игры называется платежом.

Работа состоит из  1 файл

Osnovnye_ponyatia.docx

— 57.79 Кб (Скачать документ)

Министерство образования  и науки Российской Федерации

Государственное образовательное  учреждение высшего профессионального  образования

Ивановский государственный  химико-технологический  университет

 

 

 

 

 

 

 

 

Доклад

                                             по дисциплине Теория принятия решений

Тема Основные понятия, классификация  и описание игр

 

 

 

 

 

 

 

 

 

 

Студенты Бяков Р.А., Кандагалов М.Р.

Курс 3 Группа 42

Проверила: ст. преп. Кулакова С.В.

 

 

 

Иваново 2012

Основные понятия.

Игра – это действительный или формальный конфликт, в котором имеется по крайней мере два участника (игрока), каждый из которых стремится к достижению собственных целей.

 

Допустимые действия каждого  из игроков, направленные на достижение некоторой цели, называются правилами игры.

 

Игра называется парной, если в ней участвуют два игрока, и множественной, если число игроков больше двух. Далее будем рассматривать только парные игры. В такой игре участвуют два игрока - A и B, интересы которых противоположны. Под игрой (процессом игры) будет понимать ряд действий со стороны A и B.

 

Количественная оценка результатов  игры называется платежом.

 

Парная игра называется игрой с нулевой суммой, или антагонистической, если сумма платежей равна нулю, т.е выигрыш одного игрока равен проигрышу другого. В этом случае для полного задания игры достаточно указать одну из величин. Если, например, a – выигрыш одного из игроков, b - выигрыш другого, то для игры с нулевой суммой b = -a, поэтому достаточно рассматривать, например, a.

В рамках данного курса  будем рассматривать парные игры с нулевой суммой.

 

Выбор и осуществление  одного из действий, предусмотренных  правилами, называется ходом игрока. Ходы могут быть личными и случайными.

Личный ход – это сознательный выбор игроком одного из возможных действий (например, ход в шахматной игре).

Случайный ход – это случайно выбранное действие (например, выбор карты из перетасованной колоды).

В дальнейшем мы будем рассматривать  только личные ходы игроков.

 

Стратегией игрока называется совокупность правил, определяющих выбор его действия при каждом личном ходе в зависимости от сложившейся ситуации.

Обычно в процессе игры при каждом личном ходе игрок делает выбор в зависимости от конкретной ситуации. Однако, в принципе, возможно, что решения приняты игроком  заранее (в ответ на любую сложившуюся  ситуацию). Это означает, что игрок  выбрал определенную стратегию, которая  может быть задана в виде списка правил или программы.

 

Игра называется конечной, если у каждого игрока есть конечное число стратегий, и бесконечной – в противном случае.

 

Стратегия игрока называется оптимальной, если она обеспечивает игроку максимальный выигрыш (или, что то же самое, минимальный проигрыш), при условии, что второй игрок придерживается своей стратегии.

Если игра повторяется  много раз, то игроков может интересовать не выигрыш и проигрыш в каждой конкретной партии, а средний выигрыш (проигрыш) во всех партиях.

Для того чтобы решить игру, или найти решение игры, необходимо для каждого из игроков выбрать  оптимальную стратегию.

 

Классификация и  описание игр.

Кооперативные и  некооперативные

Основные статьи: Кооперативная игра (математика), Некооперативная игра

Игра называется кооперативной, или коалиционной, если игроки могут объединяться в группы, взяв на себя некоторые обязательства перед другими игроками и координируя свои действия. Этим она отличается от некооперативных игр, в которых каждый обязан играть за себя. Развлекательные игры редко являются кооперативными, однако такие механизмы нередки в повседневной жизни.

Часто предполагают, что  кооперативные игры отличаются именно возможностью общения игроков друг с другом. В общем случае это  неверно. Существуют игры, где коммуникация разрешена, но игроки преследуют личные цели, и наоборот.

Из двух типов игр, некооперативные  описывают ситуации в мельчайших деталях и выдают более точные результаты. Кооперативные рассматривают  процесс игры в целом. Попытки  объединить два подхода дали немалые  результаты. Так называемая программа Нэша уже нашла решения некоторых кооперативных игр как ситуации равновесия некооперативных игр.

Гибридные игры включают в  себя элементы кооперативных и некооперативных  игр. Например, игроки могут образовывать группы, но игра будет вестись в  некооперативном стиле. Это значит, что каждый игрок будет преследовать интересы своей группы, вместе с  тем стараясь достичь личной выгоды.

Симметричные  и несимметричные

 

А

Б

А

1, 2

0, 0

Б

0, 0

1, 2

Несимметричная  игра


Игра будет симметричной тогда, когда соответствующие стратегии у игроков будут равны, то есть иметь одинаковые платежи. Иначе говоря, если игроки могут поменяться местами и при этом их выигрыши за одни и те же ходы не изменятся. Многие изучаемые игры для двух игроков — симметричные. В частности, таковыми являются: «Дилемма заключённого», «Охота на оленя», «Ястребы и голуби».[8] В качестве несимметричных игр можно привести «Ультиматум» или «Диктатор».

В примере справа игра на первый взгляд может показаться симметричной из-за похожих стратегий, но это не так — ведь выигрыш второго игрока при профилях стратегий (А, А) и (Б, Б) будет больше, чем у первого.

С нулевой суммой и с ненулевой суммой

 

А

Б

А

−1, 1

3, −3

Б

0, 0

−2, 2

Игра с нулевой  суммой


Игры с нулевой  суммой — особая разновидность игр с постоянной суммой, то есть таких, где игроки не могут увеличить или уменьшить имеющиеся ресурсы, или фонд игры. В этом случае сумма всех выигрышей равна сумме всех проигрышей при любом ходе. Посмотрите направо — числа означают платежи игрокам — и их сумма в каждой клетке равна нулю. Примерами таких игр может служить покер, где один выигрывает все ставки других; реверси, где захватываются фишки противника; либо банальное воровство.

Многие изучаемые математиками игры, в том числе уже упоминавшаяся  «Дилемма заключённого», иного рода: в играх с ненулевой суммой выигрыш какого-то игрока не обязательно означает проигрыш другого, и наоборот. Исход такой игры может быть меньше или больше нуля. Такие игры могут быть преобразованы к нулевой сумме — это делается введением фиктивного игрока, который «присваивает себе» излишек или восполняет недостаток средств.[9]

Ещё игрой с отличной от нуля суммой является торговля, где каждый участник извлекает выгоду. Сюда также относятся го, шашки и шахматы; в двух последних игрок может превратить свою рядовую фигуру в более сильную, получив преимущество. Во всех этих случаях сумма игры увеличивается. Широко известным примером, где она уменьшается, является война.

Параллельные  и последовательные

В параллельных играх игроки ходят одновременно, или, по крайней  мере, они не осведомлены о выборе других до тех пор, пока все не сделают свой ход. В последовательных, или динамических, играх участники могут делать ходы в заранее установленном либо случайном порядке, но при этом они получают некоторую информацию о предшествующих действиях других. Эта информация может быть даже не совсем полной, например, игрок может узнать, что его противник из десяти своих стратегий точно не выбрал пятую, ничего не узнав о других.

Различия в представлении  параллельных и последовательных игр  рассматривались выше. Первые обычно представляют в нормальной форме, а  вторые — в экстенсивной.

С полной или неполной информацией

Важное подмножество последовательных игр составляют игры с полной информацией. В такой игре участники знают  все ходы, сделанные до текущего момента, равно как и возможные  стратегии противников, что позволяет  им в некоторой степени предсказать  последующее развитие игры. Полная информация не доступна в параллельных играх, так как в них неизвестны текущие ходы противников. Большинство  изучаемых в математике игр — с неполной информацией. Например, вся «соль»Дилеммы заключённого или Сравнения монеток заключается в их неполноте.

В то же время есть интересные примеры игр с полной информацией: «Ультиматум», «Многоножка». Сюда же относятся шахматы, шашки, го, манкала и другие.

Часто понятие полной информации путают с похожим — совершенной информации. Для последнего достаточно лишь знание всех доступных противникам стратегий, знание всех их ходов необязательно.

Игры с бесконечным  числом шагов

Игры в реальном мире или  изучаемые в экономике игры, как  правило, длятся конечное число ходов. Математика не так ограничена, и в частности, в теории множестврассматриваются игры, способные продолжаться бесконечно долго. Причём победитель и его выигрыш не определены до окончания всех ходов.

Задача, которая обычно ставится в этом случае, состоит не в поиске оптимального решения, а в поиске хотя бы выигрышной стратегии. Используя аксиому выбора, можно доказать, что иногда даже для игр с полной информацией и двумя исходами — «выиграл» или «проиграл» — ни один из игроков не имеет такой стратегии. Существование выигрышных стратегий для некоторых особенным образом сконструированных игр имеет важную роль в дескриптивной теории множеств.

Дискретные и  непрерывные игры

Большинство изучаемых игр дискретны: в них конечное число игроков, ходов, событий, исходов и т. п. Однако эти составляющие могут быть расширены на множествовещественных чисел. Игры, включающие такие элементы, часто называются дифференциальными. Они связаны с какой-то вещественной шкалой (обычно — шкалой времени), хотя происходящие в них события могут быть дискретными по природе. Дифференциальные игры также рассматриваются в теории оптимизации, находят своё применение в технике и технологиях, физике.

Метаигры

Это такие игры, результатом  которых является набор правил для  другой игры (называемой целевой или игрой-объектом). Цель метаигр — увеличить полезность выдаваемого набора правил. Теория метаигр связана с теорией оптимальных механизмов (англ.).

 

Антогоническая игра

Антагонистическая игра (игра с нулевой суммой, англ. zero-sum) — термин теории игр. Антагонистической игрой называется некооперативная игра, в которой участвуют два игрока, выигрыши которых противоположны.

Формально антагонистическая  игра может быть представлена тройкой <X, Y, F>, где X и Y — множества стратегий первого и второго игроков, соответственно; F — функция выигрыша первого игрока, ставящая в соответствие каждой паре стратегий (ситуации) (x,y),   действительное число, соответствующее полезности первого игрока при реализации данной ситуации. Так как интересы игроков противоположны, функция F одновременно представляет и проигрыш второго игрока.

Исторически антагонистические  игры являются первым классом математических моделей теории игр, при помощи которых  описывались азартные игры. Считается, что благодаря этому предмету исследования теория игр и получила свое название. В настоящее время  антагонистические игры рассматриваются  как часть более широкого класса некооперативных игр.

 

 

Пример


X \ Y

Орел

Решка

Орел

-1, 1

1, -1

Решка

1, -1

-1, 1


Простейшим примером антагонистической  игры является игра «Орлянка». Первый игрок прячет монету орлом или решкой вверх, а второй пытается угадать, как она спрятана. Если он не угадывает — он платит первому одну денежную единицу, если угадывает — первый платит ему одну денежную единицу.

В данной игре каждый участник имеет две стратегии: «орел» и  «решка». Множество ситуаций в игре состоит из четырех элементов. В строках таблицы указаны стратегии первого игрока х, в столбцах — стратегии второго игрока y. Для каждой из ситуаций указаны выигрыши первого и второго игроков.

В аналитическом виде функция  выигрыша первого игрока имеет следующую  форму:

где x ∈ X и y ∈ Y — стратегии первого и второго игроков, соответственно.

Так как выигрыш первого  игрока равен проигрышу второго, то  .

 Матрица, верхняя и нижняя  цена потерь

Рассмотрим следующую  модель. Игрок А желает принять решение, на результат которого влияет другой игрок В, цели которого противоположны А. Игрок В анализирует все возможные варианты А и принимает такое решение, которое приводит к наименьшему выигрышу А(соответственно максимальному своему выигрышу).  
     Пусть игрок А может выбрать в качестве действий одну из п альтернатив (вариантов) своих возможных действий: А1, А2,…, Аn. Эти альтернативы в теории игр принято называть стратегиями. Аналогично, игрок В может принять одну из m своих стратегий В1, В2,…, Вm. Предположим, что известны выигрыши (проигрыши) игрока А при любой выбранной им стратегии Аи любом ответе ему игроком В – стратегии Вj. Пусть этот результат выражен числом аij (которое может быть и отрицательным в случае проигрыша А). Величины аij образуют матрицу: 
    

Информация о работе Основные понятия, описание и классификация игр