Альтернативные источники энергии

Автор работы: Пользователь скрыл имя, 25 Апреля 2013 в 15:22, реферат

Описание

Использование любого вида энергии и производство электроэнергии сопровождается образованием многих загрязнителей воды и воздуха. Перечень таких загрязнителей удивительно длинен, а их количества чрезвычайно огромны. Вполне естественно возникает вопрос, всегда ли использование энергии и производство электроэнергии должно сопровождаться разрушением окружающей среды. И если правда, что любой вид человеческой деятельности неизбежно оказывает вредное воздействие на природу, то степень этого вреда различна. Мы не можем не влиять на среду, в которой живем, поскольку для поддержания жизненных процессов как таковых необходимо поглощать и использовать энергию.

Содержание

Введение
3
1. Источники энергии сегодня их значение.
5
2. Альтернативные источники энергии.

2.1. Понятие и классификация альтернативных источников энергии
8
2.2. Виды альтернативных источников энергии и их применение

2.2.1. Энергия солнечного света
9
2.2.2. Энергия ветра
12
2.2.3. Геотермальная энергия (энергия земли)
14
2.2.4. Энергия приливов и отливов морей
16
2.2.5. Биоэнергия
20
3. Экологические перспективы и проблемы использования нетрадиционных и возобновляемых источников энергии
22
Заключение
25
Список использованной литературы

Работа состоит из  1 файл

Реферат на тему Альтернативные источники энергии Экология.docx

— 70.50 Кб (Скачать документ)

Но в обоих вариантах использования  главный недостаток заключается, пожалуй, в очень слабой концентрации геотермальной  энергии. Впрочем, в местах образования  своеобразных геотермических аномалий, где горячие источники или  породы подходят сравнительно близко к поверхности и где при  погружении вглубь на каждые 100м температура  повышается  на  30-40°С, концентрации геотермальной энергии могут создавать условия и для хозяйственного её использования. В зависимости от  температуры воды, пара или пароводяной смеси геотермальные источники подразделяются на низко- и среднетемпературные (с температурой до 1300–150°С) и высокотемпературные (свыше 150°). От  температуры во многом зависит характер их использования.

Можно утверждать, что геотермальная  энергия имеет четыре выгодных отличительных  черты.

Во-первых,  её запасы практически неисчерпаемы. По оценкам конца 70-х годов до глубины 10 км они составляют такую величину, которая в 3,5 тысячи раз превышает запасы традиционных видов минерального топлива.

Во-вторых, геотермальная энергия довольно широко распространена. Концентрация её связана в основном с поясами активной сейсмической и вулканической деятельности, которые занимают 1/10 площади Земли. В пределах этих поясов можно выделить отдельные наиболее перспективные «геотермальные районы», примерами которых могут служить Калифорния в США, Новая Зеландия, Япония, Исландия, Камчатка, Северный Кавказ в России. Только в бывшем СССР к началу 90-х годов было открыто около 50 подземных бассейнов горячей воды и пара.

В-третьих, использование геотермальной энергии не требует больших издержек, т.к. в данном случае речь идет об уже «готовых к употреблению», созданных самой природой источниках энергии.

Наконец, в-четвертых, геотермальная энергия в экологическом отношении совершенно безвредна и не загрязняет окружающую среду.

Человек издавна использует энергию  внутреннего тепла Земли (вспомним хотя бы знаменитые Римские бани), но её коммерческое использование началось  только в 20-х годах нашего века со строительством первых геоЭС в Италии, а затем и в других странах. К началу 80-х годов в мире действовало около 20 таких станций общей мощностью 1,5 млн. кВт. Самая крупная из них – станция Гейзерс в США (500 тыс. кВт).

Геотермальную энергию используют для выработки электроэнергии, обогрева жилья, теплиц и тому подобное. В  качестве теплоносителя используют сухой пар, перегретую воду или какой-либо теплоноситель с низкой температурой кипения (аммиак, фреон и так далее).

 

 

      2.2.4. Энергия приливов и отливов морей и океанов.

 

  Резкое увеличение цен на топливо, трудности с его получением, истощение топливных ресурсов – все эти видимые признаки энергетического кризиса вызывали в последние годы во многих странах значительный интерес к новым источникам энергии, в том числе к энергии Мирового океана.

Известно, что запасы энергии в  Мировом океане колоссальны, ведь две  трети земной поверхности (361 млн. км2) занимают моря и океаны: акватория Тихого океана составляет 180 млн. км2,Атлантического – 93 млн. км2,  Индийского – 75 млн. км2. Так, тепловая энергия, соответствующая перегреву поверхностных вод океана по сравнению с донными, скажем, на 20 градусов, имеет величину порядка 1026 Дж.  Кинетическая энергия океанских течений оценивается величиной порядка 1018Дж. Однако пока что люди умеют использовать лишь ничтожные доли этой энергии, да и то ценой больших и медленно окупающихся капиталовложений, так что такая энергетика до сих пор казалась малоперспективной.

Энергия океана давно привлекает к  себе внимание человека. В середине 80-х годов уже действовали первые промышленные установки, а также  велись разработки по следующим основным направлениям: использование энергии  приливов, прибоя, волн, разности температур воды поверхностных и глубинных  слоев океана, течений и так  далее.

Веками люди размышляли над причиной морских приливов и отливов. Сегодня  мы достоверно знаем, что могучее  природное явление – ритмичное  движение морских вод вызывают силы притяжения Луны и Солнца. Приливные  волны таят в себе огромный энергетический потенциал – 3 млрд. кВт. 

Растет интерес специалистов к  приливным колебаниям уровня океана у побережий материков. Энергию приливов на протяжении веков человек использовал для приведения в действие мельниц и лесопилок. Но с появлением парового двигателя она была предана забвению до середины 60-х годов, когда были пущены первые ПЭС во Франции и СССР.

       Приливная энергия постоянна. Благодаря этому, количество вырабатываемой на приливных электростанциях (ПЭС) электроэнергии всегда может быть заранее известно, в отличие от обычных ГЭС, на которых количество получаемой энергии зависит от режима реки, связанного не только с климатическими особенностями территории, по которой она протекает, но и с погодными условиями.

 

 

Тем не менее ученые считают, что технически возможно и экономически выгодно использовать лишь очень небольшую часть приливного потенциала Мирового океана – по некоторым оценкам только 2%.При определении технических возможностей большую роль играют такие факторы, как характер береговой линии,  форма и рельеф дна,  глубина воды, морские течения и ветер. Опыт показывает, что для эффективной работы ПЭС высота приливной волны должна быть не менее 5 м. Чаще всего такие условия возникают в мелких и узких заливах или устьях рек, впадающих в моря и океаны. Но подобных мест на всём земном шаре не так уж много: по разным источникам 25, 30 или 40.

При оценке экономических выгод  строительства ПЭС также нужно  учитывать, что наибольшие амплитуды  приливов-отливов характерны для  окраинных морей умеренного пояса. Многие из этих побережий расположены  в необжитых местах, на большом  удалении от главных районов расселения и экономической активности, следовательно, и потребления электроэнергии. Нужно  учитывать также и то, что рентабельность ПЭС резко возрастает по мере увеличения их мощности до 3-5 и тем более 10-15 млн. кВт. Но сооружение таких станций-гигантов, к тому же в отдаленных районах, требует  особенно больших затрат, не говоря уже и о сложнейших технических  проблемах.

Считается, что наибольшими запасами приливной энергии обладает Атлантический  океан. В его северо-западной части, на границе США и Канады, находится  залив Фанди, представляющий собой  внутреннюю суженную часть более  открытого залива Мен. Длина его  300 км при ширине 90 км, глубина у входа более 200 м. Этот залив знаменит самыми высокими в мире приливами, достигающими 18 м. Очень высоки приливы и у берегов Канадского арктического архипелага. Например, у побережья Баффиновой земли они поднимаются на 15,6 м. В северо-восточной части Атлантики примерно такие же приливы наблюдаются в проливе Ла-Манш у берегов Франции, в Бристольском заливе и Ирландском море у берегов Англии и Ирландии. 

Велики также запасы приливной  энергии в Тихом океане. В его  северо-западной части особенно выделяется Охотское море, где в Тугурском и Пенжинском заливах высота приливной волны составляет 9-13 м. Значительные приливы наблюдаются и у побережий Китая и Корейского полуострова. На восточном побережье Тихого океана благоприятные условия для использования приливной энергии имеются у берегов Канады, Чилийского архипелага на юге Чили, в узком и длинном Калифорнийском заливе Мексики.

В пределах Северного Ледовитого океана по запасам приливной энергии  выделяются Белое море, в Мезенской  губе которого приливы имеют высоту до 10 м, и Баренцево море у берегов Кольского полуострова (до 7 м). В Индийском океане запасы такой энергии значительно меньше. В качестве перспективных для строительства ПЭС здесь обычно называются залив Кач Аравийского моря (Индия) и северо-западное побережье Австралии.

Несмотря на такие, казалось бы весьма благоприятные, природные предпосылки, строительство ПЭС пока имеет довольно ограниченные масштабы. По существу реально можно говорить лишь о более или менее крупной промышленной ПЭС «Ранс» во Франции, об опытной Кислогубской ПЭС на Кольском полуострове (Россия) и канадско-американской ПЭС в заливе Фанди.

         При сооружении ПЭС необходимо всесторонне оценивать их экологическое воздействие на окружающую среду. Оно довольно велико. В районах сооружения крупных ПЭС существенно изменяется высота приливов, нарушается водный баланс в акватории станции, что может серьёзно сказаться на рыбном хозяйстве, разведении устриц, мидий и пр.

К числу  энергетических ресурсов Мирового океана относят также энергию волн и  температурного градиента.  Энергия ветровых волн суммарно оценивается в 2,7 млрд. кВт в год. Опыты показали, что ее следует использовать не у берега, куда волны приходят ослабленными, а в открытом море или в прибрежной зоне шельфа. В некоторых шельфовых акваториях волновая энергия достигает значительной концентрации: в США и Японии – около 40 кВт на метр волнового фронта, а на западном побережье Великобритании – даже 80 кВт на 1 метр. Использование этой энергии, хотя  и в местных масштабах, уже начато в Великобритании и Японии. Британские острова имеют очень длинную береговую линию, во многих местах море остается бурным в течение длительного времени. По оценкам ученых, за счет энергии морских волн в английских территориальных водах можно было бы получить мощность до 120 ГВт, что вдвое превышает мощность всех электростанций, принадлежащих Британскому центральному электроэнергетическому управлению.

Впервые идею использования энергии  разности температур поверхностных  и глубинных слоев воды Мирового океана предложил французский ученый д'Арсонвиль в 1881 году, но первые разработки начались лишь в 1973 году. Энергию разности температур различных слоев Мирового океана оценивают в 20-40 трлн. кВт. Из них практически могут быть использованы лишь 4 трлн. кВт.

Принцип действия этих станций заключается  в следующем: теплую морскую воду (24-32° С) направляют в теплообменник, где жидкий аммиак или фреон превращаются в пар, который вращает турбину, а затем поступает в следующий теплообменник для охлаждения и конденсации водой с температурой 5-6 °С, поступающей с глубины 200-500 метров. Получаемую электроэнергию передают на берег по подводному кабелю, но ее можно использовать и на месте (для обеспечения добычи минерального сырья со дна или его выделения из морской воды). Достоинство подобных установок – возможность их доставки в любой район Мирового океана. К тому же, разность температур различных слоев океанической воды – более стабильный источник энергии, чем, скажем, ветер, Солнце, морские волны или прибой. Первая такая установка была пущена в 1981 году на острове Науру. Единственный недостаток таких станций – их географическая привязанность к тропическим широтам. Для практического использования температурного градиента  наиболее пригодны те районы Мирового океана, которые расположены между 20° с.ш. и 29° ю.ш., где температура воды у поверхности океана достигает, как правило, 270-28°С, а на глубине 1 километр имеет всего 40-5° С.

В океане, который составляет 72% поверхности  планеты, потенциально имеются различные  виды энергии – энергия волн и  приливов; энергия химических связей газов, солей и других минералов; энергия течений, спокойно и нескончаемо  движущихся в различных частях океана; энергия температурного градиента  и другие, и их можно преобразовывать  в стандартные виды топлива. Такие  количества энергии, многообразие её форм гарантируют, что в будущем человечество не будет испытывать в ней недостатка.

 Океан наполнен внеземной  энергией, которая поступает в  него из космоса.   Она доступна  и безопасна, и не затрагивает  окружающую среду, неиссякаема  и свободна. Из космоса поступает  энергия Солнца. Она нагревает  воздух, образуя ветры, вызывающие  волны. Она нагревает океан,  который накапливает тепловую  энергию. Она приводит в движение  течения, которые в тоже время  меняют свое направление под  воздействие вращения Земли. Из  космоса же поступает энергия  солнечного и лунного притяжения. Она является движущей силой  системой Земля-Луна и вызывают приливы и отливы. Океан – это не плоское, безжизненное водное пространство, а огромная кладовая беспокойной энергии.

 

2.2.5. Биоэнергия.

 

Биото́пливо — это топливо из биологического сырья, получаемое, как правило, в результате переработки стеблей сахарного тростника или семян рапса, кукурузы, сои. Существуют также проекты разной степени проработанности, направленные на получение биотоплива из целлюлозы и различного типа органических отходов, но эти технологии находятся в ранней стадии разработки или коммерциализации.

Различается жидкое биотопливо (для двигателей внутреннего сгорания, например, этанол, метанол, биодизель), твёрдое биотопливо (дрова, солома) и газообразное (биогаз, водород).

Есть два основных направления  получения топлива из биомассы: с  помощью термохимических процессов  или путем биотехнологической переработки. Опыт показывает, что наиболее перспективна биотехнологическая переработка органического  вещества. В середине 80-х годов  в разных странах действовали  промышленные установки по производству топлива из биомассы.   Наиболее широкое распространение  получило производство спирта.

Одно из наиболее перспективных  направлений энергетического использования  биомассы – производство из неё  биогаза, состоящего на 50-80% из метана и  на 20-50% из углекислоты. Его теплотворная способность – 5-6 тыс. ккал/м3 .

Наиболее эффективно производство биогаза из навоза. Из одной тонны  его можно получить 10-12  куб. м  метана. А, например, переработка 100 млн. тонн такого отхода полеводства, как  солома  злаковых  культур, может  дать около 20 млрд. куб. м метана. В  хлопкосеющих районах ежегодно остается 8-9 млн. тонн стеблей хлопчатника,  из которых можно получить до 2 млрд. куб. м метана. Для тех же целей  возможна утилизация ботвы культурных растений , трав и другое.

        Биогаз можно конвертировать в тепловую и электрическую энергию, использовать в двигателях внутреннего сгорания для получения синтезгаза и искусственного бензина.

       Производство биогаза из органических отходов дает возможность решать одновременно три задачи: энергетическую,

 

Информация о работе Альтернативные источники энергии