Автор работы: Пользователь скрыл имя, 24 Марта 2012 в 17:55, доклад
Всё то, что нас окружает, является закономерным итогом цепи событий произошедших за миллиарды лет на нашей планете, то есть по сути вполне заурядным и рутинным результатом динамики процессов, имевших место на Земле с момента её формирования. Всё шло и продолжает идти по одним и тем же законам природы, поскольку никаких других не существует.
Всё то, что нас окружает, является закономерным итогом цепи событий произошедших за миллиарды лет на нашей планете, то есть по сути вполне заурядным и рутинным результатом динамики процессов, имевших место на Земле с момента её формирования. Всё шло и продолжает идти по одним и тем же законам природы, поскольку никаких других не существует. В связи с чем, при том отпущенном времени и тех условиях существования планеты, мы можем иметь лишь то, что получилось. А образовалась в итоге достаточно совершенная биологическая система, которая не была такой изначально. Поэтому, основная идея данной работы заключается в том, чтобы наметить подходы к целостному, в самом общем виде, пониманию того, как не нарушая основополагающих законов природы могли разворачиваться события, приведшие к феномену жизни.
Это становится возможным, если допустить, что ход предшествующей биогенезу химической эволюции направлен, в соответствии со вторым началом термодинамики, на достижение устойчивого конечного состояния. В принципе, стабильность любой молекулярной структуры определяется энергетически наиболее выгодной взаимной ориентацией её молекул. В случае, если пространственное расположение молекул не является термодинамически оптимальным или энергия внешней среды превышает силу связей между элементами структуры, то значение её энтропии, как меры неупорядоченности, повышается и она становится неустойчивой. Из чего следует, что любая открытая система, не изолированная от окружающей среды, может стать относительно нечувствительной к её дестабилизирующему воздействию, лишь в случае поступления в эту систему свободной энергии извне. Либо в случае снижения собственной энтропии при увеличении степени организации и уровня структурной упорядоченности всей системы. Вполне допустима и комбинация обоих механизмов.
Как раз эти способы
и лежат в основе функционирования биологических
структур, являясь если не отличительными
их признаками, то во всяком случае важнейшими,
определяющими приспособительные и адаптационные
возможности живой системы. Что касается
специфических свойств, присущих исключительно
живым структурам, то в первую очередь к ним
можно отнести матричное самовоспроизведение
на основе информации об особенностях своего
строения, сохраняемой в закодированном
виде. А наиболее удобными для этого химическими
соединениями оказались нуклеиновые основания
пуриновой и пиримидиновой природы. Причём
в эволюционном аспекте пурины оказались
полифункциональными соединениями [1,
2]. С незначительными модификациями они
представлены во многих функциональных
клеточных циклах — и в виде макроэргов,
как основных источников свободной энергии
(АТФ), и как универсальные регуляторы биохимических
процессов в виде циклических нуклеотидах
(цАМФ и цГМФ), не говоря уже о собственно
ДНК и РНК. Кроме того, аденин в виде никотинамидадениндинуклеотидфо
Создаётся впечатление, что вся её „мудрость“ направлена на достижение гармонии и совершенства, и заключается в подборе наиболее выгодных и удобных энергетических сочетаний молекул друг с другом. Так как, по сути, нет сколько-нибудь очевидных химических запретов на создание иных структур, чем те, которые были использованы в биогенезе. Иными словами, для химического способа хранения и реализации информации о благоприятных для живой системы сочетаниях и пространственной ориентации молекул, природа не смогла найти ничего лучшего и более подходящего, нежели рибо- и/или дезоксирибонуклеотиды.
Необходимо отметить, что переходу химической эволюции на следующий период своего развития, который мы называем жизнью, предшествовал большой подготовительный период. За это время были созданы условия для равновероятного возникновения всех структурных элементов необходимых для биогенеза. При гипотетически неизменных условиях, что собственно нереально по определению, исходно древнее состояние планеты не претерпело бы не только необходимых, но и вообще никаких химических превращений. Но поскольку подобного развития событий не произошло, это позволяет постулировать, что уже в предбиологическом периоде могли существовать высокомолекулярные соединения и появляться сложные органические молекулы, такие как липиды и нуклеотиды. Также ничего не мешало, согласно всем физико-химическим законам и спонтанному образованию аминокислот, вплоть до олигопептидов, если, конечно течению таких реакций не мешало местное внешнее окружение . Этот подготовительный период можно назвать стадией медленного накопления потенциально возможных сочетаний различных химических соединений друг с другом, поскольку необходимых ферментов для быстрого и эффективного хода этих реакций ещё не было.
Хотя по большому счёту не так уж и важно, каким образом в нужном месте и в нужное время оказалось „сырьё“, столь необходимое для ранних стадий биогенеза и какова степень вероятности таких событий. Это может представлять разве что академический интерес. Однако не даёт никаких преимуществ для понимания с какой стадии химической эволюции начинается собственно возникновение жизни и каким образом этот процесс мог происходить. По сути, это один из наиболее тёмных периодов биогенеза, полный неясных и спорных моментов.
Тем не менее, наиболее значимым фактором возникновения жизни являлось обеспечение условий для протекания „нужных“ химических реакций. Так как в открытой, но не замкнутой системе, возможности для благоприятных химических трансформаций зачастую отсутствовали в связи с целым рядом кинетических и термодинамических запретов. Но даже, если в условиях неограниченного пространства и происходила спонтанная полимеризация, например тех же нуклеотидов или аминокислот, то с большой долей вероятности, неравновесные состояния всех вновь созданных форм были крайне неустойчивыми из-за стремления внешней среды, и скорее всего её водной фазы, к достижению максимальной энтропии.
Как обычно, для решения какой-либо проблемы, в том числе и выбора оптимальных условий для биогенеза, существует как минимум два варианта. Одним из которых является направленность любой системы к достижению полной молекулярной комплементарности, что тем самым увеличивало бы энергию связывания. Но в биогенетическом аспекте это мало подходило для многих молекулярных структур, а для полимеров пептидной или нуклеотидной природы и вовсе оказывалось неприемлемым, из-за особенностей их пространственной ориентации, которая определяется слабыми водородными связями. Подобные молекулярные структуры в лучшем случае были способны к энергетически выгодной конформационной конфигурации, когда гидрофобные участки оказывались внутри „скрученной“ молекулы.
Судя по всему, для обеспечения стабильности молекулярной структуры в водном растворе подобные приёмы оказывались недостаточными, так как в итоге природа воспользовалась иным, более изящным и как оказалось единственно верным в той ситуации сценарием. То есть идеальные условия для образования и сколько-нибудь длительного существования нужных для биогенеза молекул могли быть созданы только при наличии „комфортной“ среды, которая бы отличалась от агрессивного внешнего окружения.
По всей вероятности, в определённый период химической эволюции такой возможностью стали обладать фосфолипиды, из молекул которых при нахождении в водной среде может происходить самосборка бислойной мембраны. На самом раннем этапе они скорее всего были представлены примитивными липосомальными микросферами. Этого было вполне достаточно, чтобы ход химических реакций сделать более независимым, а условия их протекания сравнительно мягче, нежели в открытом пространстве. С большой долей уверенности можно предположить, что такие структуры являются самым древним защитным барьером и прообразом плазматических и прочих клеточных биомембран. По своей пространственной организации замкнутая сферическая форма липидной мембраны соответствует наименьшему значению энергии Гиббса, то есть термодинамически выгодна по сравнению с другими возможными расположениями молекул. Кроме того, конформационная специфика бислойной фосфолипидной оболочки соответствует жидкокристаллическому состоянию, что предусматривает автономность по отношению к окружающей среде и одновременно селективную и регулируемую связь с этим внешним окружением.
Естественно, что этот уникальный вариант не мог не закрепиться в ходе последующей биологической эволюции и не создать предпосылок для формирования механизмов гомеостаза, как одного из основополагающих принципов феномена жизни. Что указывает на внутреннее подобие или фрактальность эволюции, поскольку обеспечение постоянства внутренней среды в виде защищённой внутренней полости с завидным постоянством повторяется на всех иерархических уровнях биологической системы. Сам факт подобной симметрии, проходящей сквозь разные временные и пространственные масштабы, имеет важный биологический смысл. Поскольку касается не только гомеостаза, но затрагивает и другие, например регуляторные аспекты функционирования биологических систем, что свидетельствует о целесообразности и рациональной предписанности естественных процессов. Недаром особенности их поведения подчинены не слепому случаю, а выстраиваются по фрактальному принципу в виде алгоритмической матрицы.
Безусловно, в предбиологическом периоде, как впрочем и на ранних этапах биогенеза, случай очень важен, но лишь для первоначального получения „нужных“ молекул с определёнными свойствами, которые сами по себе от случайности не зависят. Видимо таким образом, попадая в липосомальную микросферу, органические молекулы и могли образовывать оптимальные и термодинамические выгодные межмолекулярные взаимодействия, недоступные в менее благоприятных открытых условиях. И если при этом действительно формировались устойчивые связи, то у таких химических веществ появлялось больше шансов сохранить свою биогенетически верную конфигурацию и продлить своё существование. Кроме того, из-за избытка свободной энергии, присущего органическим соединениям, их концентрация в термодинамически равновесной системе становится минимальной. Это обусловлено преобладанием деструктивных процессов над синтетическими при нахождении органических макромолекул во внешней водной среде, стремящейся к максимальным значениям энтропии. Подобное смещение направленности химических реакций приводит к низкой итоговой плотности макромолекул в растворе и делает последующую полимеризацию достаточно проблематичной. Чего нельзя сказать об открытой замкнутой системе, в которой синтез органических веществ лимитирован только источником энергии и размерами внутренней сферической полости.
Однако закрепить свой „химический“ успех, то есть передать полученный опыт в виде информации о своей структуре для её последующего воспроизведения, было невозможно, из-за отсутствия в ту древнюю эпоху необходимых каталитических реакций. И каждый раз, по мере неизбежной диссимиляции, приходилось заново, с помощью затратного по времени метода проб и ошибок, выстраивать оптимальную супрамолекулярную устойчивую форму. Хотя вне всякого сомнения, вероятность нахождения сильного и потому эффективного решения резко возрастала уже на том примитивном уровне гомеостаза, который был доступен в замкнутом пространстве, образованном первичной мембраной. И не в последнюю очередь за счёт экономии времени и ресурсов при гомеостатической „фильтрации“ химических веществ по их качественным, то есть пространственным, или количественным параметрам. Что позволяло отбраковывать заведомо неподходящие, либо недостаточно оптимальные молекулярные сочетания, но ещё не приводило к упорядоченной закономерности и периодичности возникновения удачных структурных форм.
Тем не менее, динамика подобного вероятного сценария не могла не способствовать или не ускорить появление изящного способа воспроизведения исходной наследственной информации в виде матричного копирования свойств и особенностей существующей структуры. Что давало возможность для её быстрого восстановления и самоорганизации, но пока без такого важного свойства живых структур, как хранение информации в закодированном виде. Хотя уже само по себе наличие комплементарной репликации (феномен „слепка“ или матричное, по образцу, копирование линейной последовательности нуклеотидов) явилось качественным переходом химической эволюции на свою следующую ступень или отправной точкой для самой ранней стадии биогенеза, непосредственно предшествующей процессу возникновения жизни.
Следовательно, можно с определённой долей уверенности предположить, что стадия накопления „правильного“ для биогенеза химического потенциала сумела подготовить эволюционное появление молекул с самыми древними и примитивными свойствами энзимов. Так, отдельными ферментными функциями на определённом этапе эволюционного усложнения могли обладать, как „случайные“ олигопептиды, так и рибонуклеотидные последовательности в виде фрагментов РНК, что судя по всему является более вероятным филогенетическим событием [1, 3].
Прежде всего, шанс
появления каталитически
Но самое главное, как было сказано выше, спонтанно сформированные удачные пептидные фрагменты не обладали возможностью к репликации. Тогда как именно эта уникальная способность всегда была присуща РНК и является, в связи с особенностями химического состава и молекулярной структуры, её неотъемлемым важнейшим свойством. То есть, появление самого первого фрагмента РНК, обладающего каталитической активностью, например полимеразной, позволяло этой макромолекуле самореплицироваться. Но при этом ещё не приводило к формированию генетического кода, то есть к закреплению специфической информации. В этих реакциях мог быть использован принцип, сходный с современной „технологией“ комплементарной авторедупликации РНК вирусов. Причём воспроизведение исходной информации скорее всего теми же способами и происходило: либо копированием в виде РНК (репликация), либо переписыванием в форму ДНК (обратная транскрипция).