Биосистемы

Автор работы: Пользователь скрыл имя, 23 Марта 2012 в 20:07, реферат

Описание

Электрокинетические свойства биосистем используются для получения безопасной обеззараженной воды. Обеззараживание – один из наиболее важных процессов приготовления питьевой воды. Известно, что потребляемая человеком вода часто является причиной желудочно-кишечных заболеваний и других заболеваний.

Работа состоит из  1 файл

Биосистемы.docx

— 20.29 Кб (Скачать документ)

Биосистемы 

О.В. Смирнов, С.В. Воробьева

Тюменский центр Международной  Академии наук экологии и безопасности жизнедеятельности

Электрокинетические свойства биосистем используются для  получения безопасной обеззараженной воды. Обеззараживание – один из наиболее важных процессов приготовления  питьевой воды. Известно, что потребляемая человеком вода часто является причиной желудочно-кишечных заболеваний и  других заболеваний.

На  основании анализа литературных материалов выделяются следующие методы обеззараживания воды, связанные  с электричеством:

электрохимические, использующие электроэнергию для получения  бактерицидного или нейтрального агента, озонирование, обработка ионами серебра, электролиз, электрофлотация;

методы  электрообработки на основе силового взаимодействия поляризованных или  обладающих жестким диполем бактериальных  тел- электрофорез, электрокоагуляция, электрический разряд, обработка  ультракороткими волнами тока.

При обработке воды каждым из указанных  методов изменяются агрегативная и  седиментационная устойчивости биодисперсий. Следовательно, теоретическая трактовка  механизма обеззараживания вод, связанного с разделением фаз, а  также технологические и аппаратурные решения могут быть выполнены, исходя из основных положений теории коллоидно-дисперсных систем и их устойчивости.

Известно, что недостаточная очистка исходной воды отрицательно сказывается на бактерицидном  действии применяемых обеззараживающих агентов и в конечном счете  на качестве получаемой воды. Хотя в  процессе коагулирования бактерии и  вирусы не гибнут, но они инактивируются за счет осаждения (например, в фильтре) и последующего удаления сконцентрированной фазы. Так, коагулирование и удаление коллоидных и менее дисперсных включений  из речной воды понижает общее содержание вирусов в ней на 98% от исходного. Имеются также указания на достаточно полную инактивацию вирусов полиомиелита и гепатита при реагентной обработке  воды.

Таким образом, учитывая, что по своей величине бактерии соответствуют коллоидным частицам и входят в состав более  крупных образований, сорбируясь на частицах и агрегатах, для их удаления приемлемы адгезия, адсорбция, коагуляция и флокуляция. Экспериментально подтверждено, что отделение частиц коагулянта и взвесей от воды обеспечивает значительно  большую бактериальную безопасность, чем хлорирование, озонирование или  ультрафиолетовое облучение, которое  эффективно при условии бесцветной и абсолютно прозрачной воды.

Нерастворимые в воде примеси с величиной  частиц 10-5 – 10-4 см и более обуславливают мутность воды, а в некоторых случаях ее цветность. Эти частицы могут представлять собой ил, планктон, в них возможно присутствие болезнетворных бактерий, споровых микроорганизмов и вирусов, и, наконец, они иногда токсичны. Полнота удаления этих примесей из воды непосредственно зависит от степени осветления последней. К таким примесям со степенью дисперсности 10-6 – 10-5см также могут быть отнесены болезнетворные (патогенные) микроорганизмы, вирусы и другие организмы, которые по своим размерам приближаются к коллоидным частицам.

Устойчивость  частиц во многом зависит и от электрического заряда, который обуславливает целый  ряд свойств микроорганизмов, например, их электрофоретическую подвижность, устойчивость биосуспензии, склонность к спонтанной агглютинации и некоторые  другие особенности, вплоть до различий в вирулентности. Существует аналогия между электрическим зарядом  белковых молекул и бактериальных  клеток. Белки входящие в состав бактериальной клетки, обуславливают  ряд ее особенностей, свойственных белковым частицам. Бактериальная клетка ведет себя, как амфотерный элетролит  благодаря большому количеству аминокислот, входящих в состав ее бактериального белка. Поэтому диссоциация определенных групп в белковой структуре позволяет  каждой белковой частице проявить себя в качестве кислоты и в качестве основания.

При диссоциации карбоксильной группы происходит образование ионов водорода, вследствие чего белок приобретает  слабо кислый характер и в электрическом  поле будет двигаться к аноду. В свою очередь, аминогруппа (- Н2), присоединяя протоны, придает белку щелочной характер и тем самым обуславливает передвижение микроба к катоду.

В воде протоны растворенного белка  присоединяются к аминогруппам, таким  образом частицы находятся в  ионизированой форме, несущей одновременно положительный и отрицательный  заряды.

В электрическом  поле эти частицы электрически нейтральны и не передвигаются ни к аноду, ни к катоду. Это явление имеет  место в нейтральной среде. При  изменении рН среды значительно  изменяется величина электрического заряда. То значение рН, при котором белковая частица ведет себя как амфиион  и остается неподвижной в электрическом  поле вследствие того, что потенциал  ее равен 0, называется изоэлектрической точкой.

Микромолекулы, расположенные на поверхности клеточной  стенки (или капсулы) микроорганизма, содержат заряженные группы, в результате чего этот организм имеет поверхностный  заряд. Поверхность большинства  микробных клеток заряжена отрицательно, так как среди клеточных компонентов, образующих эту поверхность, присутствуют соединения, изоэлектрическая точка  которых лежит в кислой зоне (рН = 7). За небольшим исключением отдельные  организмы не поляризованы, так как  заряд распределяется равномерно по всей поверхности клетки.

Электрофоретическая подвижность микроорганизма зависит  от штамма или вида, а также от ионной силы и значения рН окружающей среды. Она изменяется с возрастом  микроорганизма, например, наименьшая электрофоретическая подвижность  бактерии Е.Coli наблюдается в течение  ранней экспоненциальной фазы роста. Подобно  белковым частицам бактериальные клетки, суспендированные в водной среде  с различными рН, при наложении  электрического поля перемещаются или  в сторону анода, или в сторону  катода. В водной нейтральной среде  они движутся по направлению к  аноду, что указывает на то, что  бактериальные клетки заряжены отрицательно.

Производились попытки использовать электрокинетическую  подвижность бактерий в качестве признака или даже показателя сравнительной  вирулентности различных представителей одного и того же вида. Однако, наряду с экспериментальными трудностями при определении этого свойства, имеется множество переменных величин, влияющих на движение бактерий в электрическом поле. Так, например, известно, что молодые клетки более электроотрицательны, чем взрослые. По-видимому, изменения электрического заряда в процессе роста клеток чрезвычайно сложны.

Электрический заряд бактериальной клетки, суспендированной в водной среде, объясняется возникновением двойного электрического слоя. Бактериальная  клетка с помощью своих поверхностных  ионов притягивает ионы противоположного заряда из среды. В результате этого  получается двойной слой, внутренняя часть которого- поверхность клетки, а наружная- среда, в которой она  находится. кси- потенциал бактерий выражает разность потенциалов между  подвижной и неподвижной частями  двойного электрического слоя, то есть между глубоко лежащей частью двойного слоя, непосредственно связанной  с поверхностью частицы, и всей остальной  средой. Из этого следует, что кси - потенциал бактерий значительно  зависит от степени концентрации ионов водорода среды.

Бактерии, суспендированные в нейтральной  водной среде, под влиянием электрического поля несут отрицательный электрический  заряд. Это связано с состоянием щелочной диссоциации белка бактерии. При постепенном подкислении  среды потенциал снижается до нуля, при дальнейшем подкислении  бактерии перезаряжаются и приобретают  положительный электрический заряд  и поэтому под действием электрического поля перемещаются теперь к катоду. Чем больше удаляются бактерии от изоэлектрической точки, тем выше их положительный заряд. Скорость движения не изменяется и после смерти клетки.

Направление движения бактерий в электрическом  поле, спонтанная агглютинация, которую  они часто обнаруживают при кислой реакции среды указывают, что  у бактерий при их физиологических  значениях рН наблюдается перевес  кислых групп над основными. Вследствие отрицательного заряда и коллоидных размеров бактерий и взаимодействие с положительно заряженными ионами окружающей среды представляет особенный  интерес. Между клеткой и средой все время происходит обмен ионами, который зависит как от концентрации этих ионов, так и от их способности  к адсорбции.

Таким образом, биосистемы обладают многими  свойствами обычных дисперсных систем. Попытка удаления их биофазы из питьевой воды путем коагуляции и флокуляции является сравнительно новой.

Электрообработка, при которой кроме анодного растворения  электродов из железа и алюминия имеют  место явления специфические- поляризационные, связанные с воздействием поля на клетку как слоистый полупроводник- диэлектрик, должна быть тем более  эффективной при обеззараживании  воды. Известно, что для некоторых  географических районов применение химических методов обеззараживания  воды, например, для Крайнего Севера и Сибири, связано со значительными  трудностями. В условиях низкой температуры  обеззараживающее действие хлора не проявляется, транспортировка реагентов  в условиях Севера и в Сибири для  обеззараживания сложна и стоит  дорого, для реагентной обработки  необходимы капитальные очистные сооружения. На Крайнем Севере и в Сибири для  обеззараживания воды наиболее перспективны электрохимические методы и методы электрообработки.

Общим для методов электрообработки является использование внешнего электрического поля. Сами методы, в зависимости  от явлений, происходящих в межэлектродном пространстве, могут быть классифицированы следующим образом. Во внимание принимались технология электрообработки, особенности внешнего электрического поля (частота, равномерность и т.д.). Выделялись такие методы: электродиализ, электролиз, электрохимическая коагуляция, электрофлотация, электрофорез, электрокоагуляция, диполофорез, электрофильтрование, электроосмос, электрический разряд малой мощности, высоковольтный импульсный разряд, комплекс электрических воздействий.

Принципиально новые технологии и биотехнологии  с использованием электричества  породили ряд актуальных вопросов безопасности как в отношении работающих, так  и в экологическом аспекте.

Применение  электрообработки в быту, водоснабжении  и водоотведении, а так же при  освоении нефтегазоперерабатывающих  территорий Сибири и Крайнего Севера, в монолитном домостроении, при сооружении оснований и фундаментов, производстве зданий из керамических масс, обезвоживании  осадков, осушении грунтов и строительных конструкций, а также при создании замкнутых систем водоснабжения  с использованием узлов электрообработки, позволило улучшить условия труда  за счет исключения контакта работающих с вредными реагентами, например, солями железа, алюминия, магния, органическими  добавками (в бетон или скоагулированную воду) и др.

Внедрение АСУ ТП с использованием электрообработок позволило достичь тех же целей  там, где невозможна по технологии замена вредных компонентов- аэрозолей, излучений, шума, вибраций, вредных газов и  жидкостей.

В целом  отмечается снижение общего числа несчастных случае, но тяжесть их, к сожалению, несколько возрастает.

Для широкого внедрения электрических  методов необходимо убедится в отсутствии опухолеродного действия воды, подвергнутой электрообработке. Особенно это важно  для водообеспечения экипажей автономных объектов, длительно использующих воду после электрообработки.

Проводились исследования к.м.н. Окуневым Р.А с  сотрудниками по проверке возможной  онкогенности веществ образовывающихся при электрообработке.

Согласно  заключению экспертов Всемирной  организации здравоохранения, не менее 75% всех случаев возникновения злокачественных  опухолей обусловлено факторами  окружающей среды, и прежде всего  широким внедрением химии в сферу  производственной и хозяйственно- бытовой  деятельности человека. Это обстоятельство требует проверки на канцерогенность  химических веществ, однако она трудно выполнима как из-за огромного  их числа (ежегодно синтезируется более 250000 новых веществ), так и сложности, длительности, дороговизны проведения классических опытов на животных. Так, эксперименты по определению канцерогенности  только одного какого- либо вещества требует  участия многих специалистов, использования  многочисленных методик; длительности опыта не менее 2-3 лет. По данным США, оценка канцерогенности лишь одного химического вещества обходится  в 300 - 500000 долларов.

Проводилось исследование с использованием в  качестве микроорганизмов- тестеров сальмонеллы  тифимуриум линий (штаммов) ТА- 98 и 100. На первом этапе исследовалась мутагенность воды, подвергнутой различным электрическим  воздействиям: постоянное электрическое  поле, электрический разряд малой  мощности и их сочетание- комплекс электрических  воздействий. Число мутантов обоих  штаммов мальмонеллы тифимуриум в воде после использования различных  методов электрообработки примерно такое же, что и в контроле (дехлорированной водопроводной воде). При этом следует подчеркнуть, что достоверным считается увеличение числа мутантов в 3 и более раза.

На  следующем этапе работы изучалась  мутагенность воды, обработанной комплексом электрических воздействий. В этой серии опытов производилось предварительное  концентрирование воды в 500 раз с  помощью хлористого метилена на специальной  установке. Использовались 3 разные модификации  методики Эймса: ТТА- тест на твердом  агаре (чашечная проба), МПр - модификация с преинкубацией и ЖИП- высокочувствительная жидкостно- инкубационная проба.

С помощью  физико-химических методов одновременно производилось количественное определение  основных групп канцерогенных веществ  полициклических ароматических  углеводородов (в частности, бенз(а)пирена) и нитрозосоединений. Определение  бенз(а)пирена проводилось флуоресцентно- спектральным методом на спектрофотометре ДФС- 12, нитрозосоединений- хемилюминесцентным методом на газовом хроматографе с детектором ТЭА- 502. Увеличение числа  мутантов в пробах обработанной воды ни в одном случае не превышало  допустимого предела. Ни в одной  пробе не обнаружено таких канцерогеннов, как бенз(а)пирена и нитрозосоединений.

Информация о работе Биосистемы