Факторы и ресурсы среды

Автор работы: Пользователь скрыл имя, 28 Февраля 2012 в 20:13, доклад

Описание

Фотосинтез (от греч. φωτο- — свет и σύνθεσις — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

Работа состоит из  1 файл

экология дз.doc

— 77.00 Кб (Скачать документ)


ТЕМА 3:  «Факторы и ресурсы среды»

 

 

1.         Экологическое значение света - фотосинтез, фотопериод, категории организмов по отношению к свету, биологические часы, суточная и сезонная цикличность (привести примеры)

 

Фотосинтез (от греч. φωτο- — свет и σύνθεσις — синтез, совмещение, помещение вместе) — процесс образования органических веществ из углекислого газа и воды на свету при участии фотосинтетических пигментов (хлорофилл у растений, бактериохлорофилл и бактериородопсин у бактерий).

Фотопериодизм — реакция организмов на суточный ритм освещённости, т.е. на соотношение светлого и тёмного периодов суток.

Сущность фотопериодизма заключается в ритмичных изменениях морфологических, биохимических и физиологических свойств и функций организмов под влиянием чередования и длительности светлого и тёмного периодов суток. Продолжительность освещения, или фотопериод, представляет собой некий пусковой механизм, определяющий последовательность физиологических процессов, приводящих к росту и цветению многих растений, линьке и накоплению жира, миграции и размножению птиц и млекопитающих и наступлению диапаузы (стадии покоя) у насекомых. Например, чёрные стрижи улетают из средней полосы России в конце августа, когда ещё тепло и воздушные насекомые, служащие им кормом, активны.

 

По отношению к свету как экологическому фактору различают следующие группы растений.

Светолюбивые растения, или гелиофиты (греч. helios — «солнце», phyton — «растение»), — растения, предпочитающие местообитания, ярко освещённые солнцем: подсолнечник, пшеница, сосна, лиственница. Сюда также следует отнести многочисленные виды луговых и степных растений.

 

Тенелюбивые растения, или сциофиты (греч. skia — «тень», phyton — «растения»), — растения, приспособленные к жизни в условиях малой освещённости: майник двулистный, седмичник европейский, копытень европейский, папоротник щитовник мужской, сныть обыкновенная, кислица обыкновенная. Эти виды не могут существовать на вырубках при сильном освещении.

 

Теневыносливые растения, или факультативные гелиофиты, — это растения, которые могут жить при хорошем освещении, но легко переносят и затенённые места: большинство растений лесов (лещина, живучка ползучая и др.), некоторые луговые растения.

 

Сезонный фотопериодизм характерен для растений и животных, обитающих в местах с сезонной выраженностью изменения длины дня и ночи, и обусловлен биологическими циклами организмов, зависимыми от цикличности природных явлений.

 

Фотопериодичность также связана с широко известным механизмом биологических часов, т.е. со способностью организмов отсчитывать время и претерпевать строго циклические изменения функций примерно через 24-часовые интервалы. «Биологические часы» позволяют приводить физиологические ритмы в соответствие с окружающей средой и дают возможность организмам как бы предвидеть суточные, сезонные и другие периодические колебания освещённости, температуры и т.д. По отношению к фотопериоду растения делятся на 3 группы.

1. Растения короткого дня. Зацветание и плодоношение наступает при 8 — 12-часовом освещении. Это растения южных районов: гречиха, просо, подсолнечник, конопля и др.

2. Растения длинного дня. Для них необходимо удлинение дня до 16 — 20 часов. Это большинство растений умеренных широт, а также такие северные растения, как рожь, ячмень, овёс, лук, лён, морковь.

3. Растения, нейтральные к длине дня: виноград, флоксы, сирень и др.

 

 

2.         Экологическое значение воды. Категории организмов по отношению к воде. Адаптация организмов к воде (привести примеры).

Экологическая роль воды. Вода является необходимым условием существования всех живых организмов на Земле. Значение воды в процессах жизнедеятельности определяется тем, что она является основной средой в клетке, где осуществляются процессы метаболизма, служит важнейшим исходным, промежуточным или конечным продуктом биохимических реакций (см. гл. 1). Особая роль воды для наземных организмов (особенно растений) заключается в необходимости постоянного пополнения ее из-за потерь при испарении. Поэтому вся эволюция наземных организмов шла в направлении приспособления к активному добыванию и экономному использованию влаги. Наконец, для многих видов растений, животных, грибов и микроорганизмов вода является непосредственной средой их обитания.

 

При изучении экологической роли воды учитывается не только количество выпадающих осадков, но и соотношение их величины и испаряемости. Области, в которых испарение превышает годовую величину суммы осадков, называются аридными (сухими, засушливыми). В аридных областях растения испытывают недостаток влаги в течение большей части вегетационного периода. В гумидпых (влажных) областях растения обеспечены водой в достаточной мере.

Экологические группы растений по отношению к влаге и их адаптации к водному режиму. Высшие наземные растения, ведущие прикрепленный образ жизни, в большей степени, чем животные, зависят от обеспеченности субстрата и воздуха влагой. По приуроченности к местообитаниям с разными условиями увлажнения и по выработке соответствующих приспособлений среди наземных растений различают три основные экологические группы: гигрофиты, мезофиты и ксерофиты. Условия водоснабжения существенно влияют на их внешний облик и внутреннюю структуру.

Гигрофиты — растения избыточно увлажненных местообитаний с высокой влажностью воздуха и почвы. Для них характерно отсутствие приспособлений, ограничивающих расход воды, и неспособность переносить даже незначительную ее потерю. Наиболее типичные гигрофиты — травянистые растения и эпифиты влажных тропических лесов и нижних ярусов сырых лесов в разных климатических зонах (чистотел большой, недотрога обыкновенная, кислица обыкновенная и др.), прибрежные виды (калужница болотная, плакун-трава, рогоз, камыш, тростник), растения сырых и влажных лугов, болот (белокрыльник болотный, сабельник болотный, вахта трехлистная, осоки), некоторые культурные растения.

Характерные структурные черты гигрофитов — тонкие листовые пластинки с небольшим числом широко открытых устьиц, рыхлое сложение тканей листа с крупными межклетниками, слабое развитие водопроводящей системы (ксилемы), тонкие слаборазветвлен-ные корни, часто без корневых волосков. К физиологическим адаптациям гигрофитов следует отнести низкое осмотическое давление клеточного сока, незначительную водоудерживающую способность и, как следсгвие, высокую интенсивность транснирации, которая мало отличается от физического испарения. Избыточная влага удаляется также путем гуттации — выделения воды через специальные выделительные клетки, расположенные по краю лисга. Избыточная влага затрудняет аэрацию, а следовательно, дыхание и всасывающую деятельность корней, поэтому удаление излишков влаги представляет собой борьбу растений за доступ воздуха.

Ксерофиты -— растения сухих местообитаний, способные переносить продолжительную засуху, оставаясь физиологически активными. Это растения пустынь, сухих степей, саванн, сухих субтропиков, песчаных дюн и сухих, сильно нагреваемых склонов.

Структурные и физиологические особенности ксерофитов нацелены на преодоление постоянного или временного недостатка влаги в почве или воздухе. Решение данной проблемы осуществляется тремя способами: 1) эффективным добыванием (всасыванием) воды, 2) экономным ее расходованием, 3) способностью переносить большие потери воды.

Интенсивное добывание воды из почвы достигается ксерофитами благодаря хорошо развитой корневой системе. По общей массе корневые системы ксерофитов примерно в 10 раз, а иногда и в 300—400 раз превышают надземные части. Длина корней может достигать 10—15 м, а у саксаула черного — 30—40 м, что позволяет растениям использовать влагу глубоких почвенных горизонтов, а в отдельных случаях и грунтовых вод. Встречаются и поверхностные, хорошо развитые корневые системы, приспособленные к поглощению скудных атмосферных осадков, орошающих лишь верхние горизонты почвы.

Экономное расходование влаги ксерофитами обеспечивается тем, что листья у них мелкие, узкие, жесткие, с толстой кутикулой, с многослойным толстостенным эпидермисом, с большим количеством механических тканей, поэтому даже при большой потере воды листья не теряют упругости и тургора. Клетки листа мелкие, плотно упакованы, благодаря чему сильно сокращается внутренняя испаряющая поверхность. Кроме того, у ксерофитов повышенное осмотическое давление клеточного сока, благодаря чему они могут всасывать воду даже при больших водоотнимающих силах почвы.

К физиологическим адаптациям относится и высокая водо-удерживающая способность клеток и тканей, обусловленная большой вязкостью и эластичностью цитоплазмы, значительной долей связанной воды в общем водном запасе и т. д. Это позволяет ксерофитам переносить глубокое обезвоживание тканей (до 75% всего водного запаса) без потери жизнеспособности. Кроме того, одной из биохимических основ засухоустойчивости растений является сохранение активности ферментов при глубоком обезвоживании.

Ксерофиты с наиболее ярко выраженными ксероморфными чертами строения листьев, перечисленными выше, имеют своеобразный внешний облик, за что получили название склерофиты.

К группе ксерофитов относятся и суккуленты —- растения с сочными мясистыми листьями или стеблями, содержащими сильно развитую водоносную ткань. Различают листовые суккуленты (агавы, алоэ, молодило, очитки) и стеблевые, у которых листья редуцированы, а надземные части представлены мясистыми стеблями (кактусы, некоторые молочаи, стапелии и др.). Фотосинтез у стеблевых суккулентов осуществляется периферическим слоем паренхимы стебля, содержащим хлорофилл. Длительные засушливые периоды преодолеваются ими путем накопления воды в водоносных тканях, связывания ее коллоидами клеток, экономного расходования, которое обеспечивается защитой эпидермиса растений восковым налетом, погруженными в ткань листа или стебля немногочисленными днем закрытыми устьицами. массы.

 

3.         Экологическое значение температуры. Категории организмов по отношению к температуре окружающей среды. Адаптация организмов к температуре. (привести примеры).

Температура. Одним из наиболее важных факторов среды, определяющих существование, развитие и распространение организмов, является температура. Причём, значение имеет не только абсолютное количество тепла, но и распределение его во времени, т.е. тепловой режим.

Все химические процессы, протекающие в организме, зависят от температуры — внешней и внутренней. Особенно ясно зависимость от внешней температуры выражена у организмов, неспособных поддерживать постоянную температуру тела, т.е. у всех растений и большинства животных, кроме птиц и млекопитающих.

Растения, будучи неподвижными, должны существовать при том тепловом режиме, который создаётся в местах их произрастания.

 

По степени адаптации растений к условиям крайнего дефицита тепла выделяют три группы.

 

Нехолодостойкие растения — это растения, которые сильно повреждаются или гибнут при температурах выше точки замерзания воды. К этой группе относятся растения дождевых тропических лесов, водоросли тёплых морей.

 

Неморозостойкие растения — это растения, которые переносят низкие температуры, но гибнут, как только в тканях начинает образовываться лёд. При наступлении холодов в клеточном соке и цитоплазме этих растений повышается концентрация веществ, способствующих понижению точки замерзания до –5…–7оС. Такое переохлаждённое состояние неустойчиво и длится всего несколько часов, что, однако, позволяет им переносить заморозки. Таковы некоторые вечнозелёные субтропические виды.

 

Морозоустойчивые растения — это растения, произрастающие в областях с сезонным климатом и холодными зимами. При сильных морозах надземные органы деревьев и кустарников промерзают, но сохраняют жизнеспособность. Клетки этих растений переносят обезвоживание, связанное с образованием льда.

Степень адаптации растений и бактерий к высоким температурам

 

Нежаростойкие виды — это растения, которые повреждаются уже при +30…+40оС. Например, водные цветковые растения.

 

Жаровыносливые виды — это растения сухих местообитаний с сильной инсоляцией (степи, саванны, пустыни). Такие растения выносят получасовое нагревание до +50…+60оС.

 

Жароустойчивые виды. Термофильные бактерии и цианобактерии могут жить в горячих источниках при температуре +85…+90оС.

 

4.         Экологическое значение биогенных элементов. Составить таблицу для 4-5 биогенных веществ.

 

Биоген — питательное вещество.

Биогенные амины — вещества, обычно образующиеся в организме животных или растений из аминокислот при их декарбоксилировании (удалении карбоксильной группы) ферментами декарбоксилазами и обладающие высокой биологической активностью. К биогенным аминам относятся дофамин, норадреналин и адреналин (синтезируются изначально из аминокислоты тирозина), серотонин, мелатонин и триптамин (синтезируются из триптофана) и многие другие соединения. В организме животных многие биогенные амины выполняют роль гормонов и нейромедиаторов. Разлагаются в организме при участии ферментов аминоксидаз.

Вид биогена

Его значение для здоровья человека

В каких продуктах питания содержится данный биоген

 

 

 

 

Информация о работе Факторы и ресурсы среды