Источники энергии

Автор работы: Пользователь скрыл имя, 17 Января 2012 в 16:41, реферат

Описание

ТЕПЛОВАЯ ЭЛЕКТРОСТАНЦИЯ (ТЭС), электростанция, вырабатывающая электрическую энергию в результате преобразования тепловой энергии, выделяющейся при сжигании органического топлива. Первые ТЭС появились в кон. 19 в (в 1882 — в Нью-Йорке, 1883 — в Петербурге, 1884 — в Берлине) и получили преимущественное распространение. В сер. 70-х гг. 20 в. ТЭС — основной вид электрической станций. Доля вырабатываемой ими электроэнергии составляла: в СССР и США св. 80% (1975), в мире около 76% (1973).

Работа состоит из  1 файл

Источники энергии.doc

— 238.00 Кб (Скачать документ)

 

 Одни из первых гидроэлектрических установок мощностью всего в несколько сотен Вт были сооружены в 1876—81 в Штангассе и Лауфене (Германия) и в Грейсайде (Англия). Развитие ГЭС и их промышленное использование тесно связано с проблемой передачи электроэнергии на расстояние: как правило, места, наиболее удобные для сооружения ГЭС, удалены от основных потребителей электроэнергии. Протяжённость существовавших в то время линий электропередач не превышала 5—10 км, самая длинная линия 57 км. Сооружение линии электропередачи (170 км) от Лауфенской ГЭС до Франкфурта-на-Майне (Германия) для снабжения электроэнергией Международный   электротехнический   выставки (1891) открыла широкие возможности для развития ГЭС. В 1892 промышленный ток дала ГЭС, построенная на водопаде в Бюлахе (Швейцария), почти одновременно в 1893 были построены ГЭС в Гелыпене (Швеция), на реке Изар (Германия) и в Калифорнии (США). В 1896 вступила в строй Ниагарская ГЭС (США) постоянного тока; в 1898 дала ток ГЭС Рейпфельд (Германия), а в 1901 стали под нагрузку гидрогенераторы ГЭС Жонат (Франция).

В России существовали, но так и не были реализованы детально разработанные проекты ГЭС русских учёных Ф. А. Пироцкого,  И. А. Тиме,  Г. О. Графтио, И. Г. Александрова и др., предусматривавших, в частности, использование порожистых участков рек Днепр, Волхов, Западная Двина, Вуокса и др. Так, напр., уже в 1892—95 русским инженером В. Ф. Добротворским были составлены проекты сооружения ГЭС мощностью 23,8 Мвт на реке Нарова и 36,8 Мвт на водопаде

Б. Иматра. Реализации этих проектов препятствовали как косность царской бюрократии, так и интересы частных капиталистических групп, связанных с топливной промышленностью. Первая промышленная ГЭС в России мощностью около 0,3 Мвт (300 квт) была построена в 1895—96 под руководством русских инженеров В.Н.Чиколсва и Р. Э. Классона для электроснабжения Охтинского порохового завода в Петербурге. В 1909 закончилось строительство крупнейшей в дореволюционной России  Гиндукушской ГЭС  мощностью 1,35 Мвт (1350 квт) на р. Мургаб (Туркмения). В период 1905—17 вступили в строй Саткинская, Алавердинская, Каракультукская, Тургусунская, Сестроредкая и др. ГЭС небольшой мощности. Сооружались также частные фабрично-заводские гидроэлектрические установки с использованием оборудования иностранных фирм.

 1-я мировая  война 1914—18 и связанный с ней интенсивный рост промышленности некоторых западных стран повлекли за собой развитие действовавших и строительство новых энергопромышленных центров, в т. ч. на базе ГЭС. В результате мощность ГЭС во всём мире к 1920 достигла 17 тыс. Мвт, а мощность отдельных ГЭС, напр. Масл-Шолс (США), Иль-Малинь (Канада), превысила 400 Мвт (400 тыс. квт).

 Общая мощность ГЭС России к 1917 составляла всего  около 16 Мвт: самой крупной была Гиндукушская ГЭС. Строительство мощных ГЭС началось по существу только после Великой Октябрьской социалистической революции. В восстановит. период (20-е гг.) в соответствии с планом ГОЭЛРО были построены первые крупные ГЭС — Волховская (ныне Волховская ГЭС им. В. И. Ленина) и ЗемоАечальская ГЭС им. В. И. Ленина. В годы первых пятилеток (1929—40) вступили в строй ГЭС — Днепровская, Нижнесвирская, Рионская и др. 
 

 К началу Великой  Отечеств, войны 1941—45 было введено  в эксплуатацию 37 ГЭС общей мощностью  более 1500 Мвт. Во время войны было приостановлено начатое строительство ряда ГЭС общей мощностью около 1000 Мвт (1 млн. квт). Значит, часть ГЭС общей мощностью около 1000 Мвт оказалась разрушенной или демонтированной. Началось сооружение новых ГЭС малой и средней мощности на Урале (Широковская, Верхотурская, Алапаевская, Белоярская и др. ), в Средней Азии (Аккавакские, Фархадская, Саларская, Нижнебуэсуйские и др.), на Северном Кавказе (Майкопская, Орджоникидзевская,  Краснополянская), в Азербайджане (Мингечаурская ГЭС), в Грузии (Читахевская ГЭС) и в Армении (Гюмушская ГЭС). К кон. 1945 в Советском Союзе мощность всех ГЭС, вместе с восстановленными, достигла 1250 Мвт, а годовая выработка электроэнергии — 4,8 млрд. квт-ч. В начале 50-х гг. развернулось строительство крупных гидроэлектростанций на р. Волге у города. Горького, Куйбышева и Волгограда, Каховской и Кременчугской ГЭС на Днепре, а также Цимлянской ГЭС на Дону. Волжские ГЭС им. В. И. Ленина и им. 22-го съезда КПСС стали первыми из числа наиболее мощных ГЭС в СССР и в мире. -Во 2-й пол. 50-х гг. началось строительство Братской ГЭС на реке Ангаре и Красноярской ГЭС на р. Енисее. С 1946 .по 1958 в СССР были построены и восстановлены 63 ГЭС общей мощностью 9600 Мвт. За семилетие 1959—65 было введено 11 400 Мвт новых гидравлических мощностей и суммарная мощность ГЭС достигла 22200 Мвт (табл. 1). К 1970 в СССР продолжалось строительство 35 промышленных ГЭС (суммарной мощностью 32 000 Мвт), в т. ч. 11 ГЭС единичной мощностью свыше 1000 Мвт: Саяно-Шушенская, Красноярская, Усть-Илимская, Нурекская, Ингурская, Саратовская, Токтогульская, Нижнекамская, Зейская, Чиркейская, Чебоксарская.

 В 60-х гг. наметилась тенденция к снижению доли ГЭС в общем мировом производстве электроэнергии и всё большему использованию ГЭС для покрытия пиковых нагрузок. К 1970 всеми ГЭС мира производилось около 1000 млрд. квт-ч электроэнергии в год, причём начиная с 1960 доля ГЭС в мировом производстве снижалась в среднем за год примерно на 0,7% . Особенно быстро снижается доля ГЭС в общем производстве электроэнергии в ранее традиционно считавшихся «гидроэнергетическими» странах (Швейцария, Австрия, Финляндия, Япония, Канада, отчасти Франция), т. к. их экономический гидроэнергетический потенциал практически исчерпан.

 Несмотря  на снижение доли ГЭС в общей выработке, абсолютные значения производства электроэнергии и мощности ГЭС непрерывно растут вследствие строительства новых крупных электростанций. В 1969 в мире насчитывалось свыше 50 действующих и строящихся ГЭС единичной мощностью 1000 Мвт и выше, причём 16 из них — в Советском Союзе.

 Дальнейшее  развитие гидроэнергетического строительства  в СССР предусматривает сооружение каскадов ГЭС с комплексным использованием водных ресурсов в целях удовлетворения нужд совместно энергетики, водного транспорта, водоснабжения, ирригации, рыбного хозяйствава и пр. Примером могут служить Днепровский, Волжско-Камский, Ангаро-Енисейский, Севанский и др. каскады ГЭС.

 Крупнейшим  районом гидроэнергостроительства СССР до 50-х гг. 20 в. традиционно была Европейская часть территории Союза, на долю которойрой приходилось около 65% электроэнергии, вырабатываемой всеми ГЭС СССР. Для современного гидроэнергостроительства характерно: продолжение строительства и совершенствование низко и средне-напорных ГЭС на реках Волге, Каме, Днепре, Даугаве и др., строительство крупных высоконапорных ГЭС в труднодоступных р-нах Кавказа, Ср. Азии, Вост. Сибири и т. п., строительство средних и крупных деривационных ГЭС на горных реках с большими уклонами с использованием переброски стока в соседние бассейны, но главное — строительство мощных ГЭС на крупных реках Сибири и Д. Востока — Енисее, Ангаре, Лене и др. ГЭС, сооружаемые в богатых гидроэнергоресурсами р-нах Сибири и Д. Востока, вместе с тепловыми электростанциями, работающими на местном органическом топливе (природный газ, уголь, нефть), станут основной энергетической базой для снабжения дешёвой электроэнергией развивающейся промышленности Сибири, Средней Азии и Европейской части СССР. 

     атомная ЭЛЕКТРОСТАНЦИЯ (АЭС), электростанция, в которой атомная (ядерная) энергия преобразуется в электрическую. Генератором энергии на АЭС является атомный реактор (см. Ядерный реактор). Тепло, которое выделяется в реакторе в результате цепной реакции деления ядер некоторых тяжёлых элементов, затем так же, как и на обычных тепловых электростанциях (ТЭС), преобразуется в электроэнергию, В отличие от ТЭС, работающих на органическом топливе, АЭС работает на ядерном горючем (в основе 233U, 235U, 239Pu) При делении 1 г изотопов урана или плутония высвобождается 22 500 квт • ч, что эквивалентно энергии, содержащейся в 2800 кг условного топлива. Установлено, что мировые энергетические ресурсы ядерного горючего (уран, плутоний и др.)  существенно превышают энергоресурсы природных запасов органического, топлива (нефть, уголь, природный газ и др.). Это открывает широкие перспективы для удовлетворения быстро растущих потребностей в топливе. Кроме того, необходимо учитывать всё увеличивающийся объём потребления угля и нефти для технологических целей мировой химической промышленности, которая становится серьёзным конкурентом тепловых электростанций. Несмотря на открытие новых месторождений органического топлива и совершенствование способов его добычи, в мире наблюдается тенденция к относительному, увеличению его стоимости. Это создаёт наиболее тяжёлые условия для стран, имеющих ограниченные запасы топлива органического происхождения. Очевидна необходимость быстрейшего развития атомной энергетики, края уже занимает заметное место в энергетическом балансе ряда промышленных стран мира.

 Первая в  мире АЭС опытно-промышленного назначения (рис. 1) мощностью 5 Мвт была пущена в СССР 27 июня 1954 г. в г. Обнинске. До этого энергия атомного ядра использовалась  в военных целях. Пуск первой АЭС ознаменовал открытие нового направления в энергетике, получившего признание на 1-й Международной научно-технической конференции по мирному использованию атомной энергии (август 1955, Женева).

 В 1958 была введена  в эксплуатацию 1-я очередь Сибирской  АЭС мощностью 100 Мвт (полная проектная мощность 600 Мвт). В том же году развернулось строительство Белоярской АЭС, а 26 апреля 1964 генератор 1-й очереди (блок мощностью 100 Мвт) выдал ток в Свердловскую энергосистему, 2-й блок мощностью 200 Мвт сдан в эксплуатацию в октябре 1967. Отличительная особенность Белоярской АЭС — перегрев пара (до получения нужных параметров) непосредственно в ядерном реакторе, что позволило применить на ней обычные современные турбины почти без всяких переделок.

  В сентябре 1964 был пущен 1-й блок Нововоронежской АЭС мощностью 210 Мвт. Себестоимость 1 квт • ч электроэнергии (важнейший экономический показатель работы всякой электростанции) на этой АЭС систематически снижалась: она составляла 1,24 коп. в 1965, 1,22 коп. в 1966, 1,18 коп. в 1967, 0,94 коп. в 1968. Первый блок  Нововоронежской АЭС был построен не только для промышленного пользования, но и как демонстрация объект для показа возможностей и преимуществ атомной энергетики, надёжности и безопасности работы АЭС. В ноября 1965 в г. Мелекессе Ульяновской  обл.  вступила  в строй АЭС с водо-водяным реактором «кипящего» типа мощностью 50 Мвт., реактор собран по одноконтурной схеме, облегчающей компоновку станции. В декабре 1969 был пущен второй блок Нововоронежской АЭС (350 Мвт).

 За рубежом  первая  АЭС промышленного назначения мощностью 46 Мвт была введена в эксплуатацию в 1956 в Колдер-Холле (Англия). Через год вступила в строй АЭС 1 мощностью 60 Мвт. в Шиппингпорт (США).

 Принципиальная  схема АЭС с ядерным реактором, имеющим водяное охлаждение, приведена на рис. 2. Тепло, выделяется в активной зоне реактора, теплоносителем  вбирается водой (теплоносителем) 1-г контура, которая прокачивается через реактор циркуляционным насосом г Нагретая вода из реактора поступав в теплообменник (парогенератор) 3, где передаёт тепло, полученное в реакторе воде 2-го контура. Вода 2-го контура испаряется в парогенераторе, и образуется пар поступает в турбину 4.

 Наиболее  часто на АЭС применяют 4 типа реакторов  на тепловых нейтронах 1) водо-водяные  с обычной водой в качестве замедлителя и теплоносителя; 2) графито-водные с водяным теплоносителем и графитовым замедлителем; 3) тяжеловодные с водяным теплоносителем и тяжёлой водой в качестве замедлителя 4) графито-газовые с газовым теплоносителем и графитовым замедлителем. 

 Выбор преимущественно  применяемого типа реактора определяется главным образом накопленным опытом    в             реактороносителе а также наличием необходимого промышленного оборудования, сырьевых запасов и т. л. В СССР строят главным образом графито-водные и водо-водяные реакторы. На АЭС США наибольшее распространение получили водо-водяные реакторы. Графито-газовые реакторы применяются в Англии. В атомной энергетике Канады преобладают АЭС с тяжеловодными реакторами.

  В зависимости  от вида и агрегатного состояния теплоносителя создается тот или иной термодинамический цикл АЭС. Выбор верхней температурной границы термодинамического цикла определяется максимально допустимой темп-рой оболочек тепловыделяющих элементов (ТВЭЛ), содержащих ядерное горючее, допустимой темп-рой собственно ядерного горючего, а также свойствами теплоносителя, принятого для данного типа реактора. На АЭС. тепловой реактор которой охлаждается водой, обычно пользуются низкотемпературными паровыми циклами. Реакторы с газовым теплоносителем позволяют применять относительно более экономичные циклы водяного пара с повышенными начальными давлением и темп-рой. Тепловая схема АЭС в этих двух случаях выполняется 2-контурной: в 1-м контуре циркулирует теплоноситель, 2-й контур — пароводяной. При реакторах  с кипящим водяным или высокотемпературным газовым теплоносителем возможна одноконтурная тепловая  АЭС. В кипящих реакторах вода кипит в активной зоне, полученная пароводяная смесь сепарируется, и насыщенный пар направляется или непосредственно в турбину, или предварительно возвращается в активную зону для перегрева.

(рис. 3). В высокотемпературных  графито-газовых реакторах возможно  применение обычного газотурбинного  цикла. Реактор в этом случае  выполняет  роль камеры сгорания.

 При работе реактора концентрация делящихся изотопов в ядерном топливе постепенно уменьшается, и топливо  выгорает. Поэтому со временем их заменяют свежими. Ядерное горючее перезагружают с помощью механизмов и приспособлений с дистанционным управлением. Отработавшее топливо переносят в бассейн выдержки, а затем направляют на переработку.

 К реактору и  обслуживающим его системам относятся: собственно реактор с биологической защитой, теплообменники, насосы или газодувные установки, осуществляющие циркуляцию теплоносителя; трубопроводы и арматура циркуляции контура; устройства для перезагрузки ядерного горючего; системы спец. вентиляции, аварийного расхолаживания и др.

Информация о работе Источники энергии