Круговорт веществ в биосфере

Автор работы: Пользователь скрыл имя, 31 Марта 2012 в 01:20, реферат

Описание

Слово "экология" образовано из двух греческих слов: "oicos", что означает дом, жилище, и "logos" - наука и дословно переводится как наука о доме, местообитании. Впервые этот термин использовал немецкий зоолог Эрнст Геккель в 1886 году, определив экологию как область знаний, изучающую экономику природы, - исследование общих взаимоотношений животных как с живой, так и с неживой природой, включающей все как дружественные, так и недружественные отношения, с которыми животные и растения прямо или косвенно входят в контакт

Содержание

Введение

1. Круговорот веществ в биосфере

2. Взаимоотношения организма и среды

3. Международное сотрудничество в области охраны природной среды

Заключение

Список использованной литературы

Работа состоит из  1 файл

экология.doc

— 225.08 Кб (Скачать документ)


Содержание

 

Введение

 

1. Круговорот веществ в биосфере

 

2. Взаимоотношения организма и среды

 

3. Международное сотрудничество в области охраны природной среды

 

Заключение

 

Список использованной литературы

 


Введение

 

Слово "экология" образовано из двух греческих слов: "oicos", что означает дом, жилище, и "logos" - наука и дословно переводится как наука о доме, местообитании. Впервые этот термин использовал немецкий зоолог Эрнст Геккель в 1886 году, определив экологию как область знаний, изучающую экономику природы, - исследование общих взаимоотношений животных как с живой, так и с неживой природой, включающей все как дружественные, так и недружественные отношения, с которыми животные и растения прямо или косвенно входят в контакт. Такое понимание экологии стало общепризнанным и сегодня классическая экология - это наука об изучении взаимоотношений живых организмов с окружающей их средой.

Живое вещество настолько многообразно, что его изучают на разных уровнях организации и под разным углом зрения.

Уровни организмов, популяций и экосистем являются областью интересов классической экологии.

В зависимости от объекта исследования и угла зрения, под которым он изучается, в экологии сформировались самостоятельные научные направления.

По размерности объектов изучения экологию делят на аутэкологию (организм и его среда), популяционную экологию (популяция и ее среда), синэкологию (сообщества и их среда), биогеоцитологию (учение об экосистемах) и глобальную экологию ( учение о биосфере Земли).

В зависимости от объекта изучения экологию подразделяют на экологию микроорганизмов, грибов, растений, животных, человека, агроэкологию, промышленную (инженерную), экологию человека и т.п.

По средам и компонентам различают экологию суши, пресных водоемов, моря, пустынь, высокогорий и других средовых и географических пространств.

К экологии часто относят большое количество смежных отраслей знаний, главным образом из области охраны окружающей среды.

 


1. Круговорот веществ в биосфере

 

Биогеохимические круговороты.

 

В отличие от энергии, которая однажды использованная организмом, превращается в тепло и теряется для экосистемы, вещества циркулируют в биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним элементов, встречающихся в природе, около 40 нужны живым организмам. Наиболее важные для них и требующиеся в больших количествах: углерод, водород, кислород, азот. Кислород поступает в атмосферу в результате фотосинтеза и расходуется организмами при дыхании. Азот извлекается из атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт саморегулирующих процессов, в которых участвуют все составные части экосистем. Эти процессы являются безотходными. В природе нет ничего бесполезного или вредного, даже от вулканических извержений есть польза, так как с вулканическими газами в воздух поступают нужные элементы, например, азот Акимова.

Существует закон глобального замыкания биогеохимического круговорота в биосфере, действующий на всех этапах её развития, как и правило увеличения замкнутости биогеохимического круговорота в ходе сукцессии. В процессе эволюции биосферы увеличивается роль биологического компонента в замыкании биогеохимического круговорота. Ещё большую роль на биогеохимический круговорот оказывает человек. Но его роль осуществляется в противоположном направлении. Человек нарушает сложившиеся круговороты веществ, и в этом проявляется его геологическая сила, разрушительная по отношению к биосфере на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера состояла из вулканических газов. В ней было много углекислого газа и мало кислорода (если вообще был), и первые организмы были анаэробными. Так как продукция в среднем превосходила дыхание, за геологическое время в атмосфере накапливался кислород и уменьшалось содержание углекислого газа. Сейчас содержание углекислого газа в атмосфере увеличивается в результате сжигания больших количеств горючих ископаемых и уменьшения поглотительной способности «зелёного пояса». Последнее является результатом уменьшения количества самих зелёных растений, а также связано с тем, что пыль и загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости биогеохимических круговоротов уменьшается. Хотя она довольно высока (для различных элементов и веществ она не одинакова), но тем не менее не абсолютна, что и показывает пример возникновения кислородной атмосферы. Иначе невозможна была бы эволюция (наивысшая степень замкнутости биогеохимических круговоротов наблюдается в тропических экосистемах - наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не должно меняться, а скорее о влиянии человека на скорость и направление изменений и на расширение их границ, нарушающее правило меры преобразования природы. Последнее формулируется следующим образом: в ходе эксплуатации природных систем нельзя превышать некоторые пределы, позволяющие этим системам сохранять свойства самоподдержания. Нарушение меры как в сторону увеличения, так и в сторону уменьшения приводит к отрицательным результатам. Например, избыток вносимых удобрений столь же вреден, сколь и недостаток. Это чувство меры утеряно современным человеком, считающим, что в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в частности, с разработкой и введением в эксплуатацию замкнутых технологических циклов. Создаваемые человеком циклы превращения материалов считается желательным устраивать так, чтобы они были подобны естественным циклам круговорота веществ. Тогда одновременно решались бы проблемы обеспечения человечества невосполнимыми ресурсами и проблема охраны природной среды от загрязнения, поскольку ныне только 1 2% веса природных ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако полная и окончательная перестройка индустрии по принципу круговорота вещества в природе не реальна. Хотя бы временное нарушение замкнутости технологического цикла практически неизбежно, например, при создании синтетического материала с новыми, неизвестными природе свойствами. Такое вещество вначале всесторонне апробируется на практике, и только потом могут быть разработаны способы его разложения с целью внедрения составных частей в природные круговороты.

Процессы фотосинтеза органического вещества из неорганических компонентов продолжается миллионы лет, и за такое время химические элементы должны были перейти из одной формы в другую. Однако этого не происходит благодаря их круговороту в биосфере. Ежегодно фотосинтезирующие организмы усваивают около 350 млрд т углекислого газа, выделяют в атмосферу около 250 млрд т кислорода и расщепляют 140 млрд т воды, образуя более 230 млрд т органического вещества (в пересчёте на сухой вес).

Громадные количества воды проходят через растения и водоросли в процессе обеспечения транспортной функции и испарения. Это приводит к тому, что вода поверхностного слоя океана фильтруется планктоном за 40 дней, а вся остальная вода океана - приблизительно за год. Весь углекислый газ атмосферы обновляется за несколько сотен лет, а кислород за несколько тысяч лет. Ежегодно фотосинтезом в круговорот включается 6 млрд т азота, 210 млрд т фосфора и большое количество других элементов (калий, натрий, кальций, магний, сера, железо и др.). существование этих круговоротов придаёт экосистеме определённую устойчивость.

Различают два основных круговорота: большой (геологический) и малый (биотический).

Большой круговорот, продолжающийся миллионы лет, заключается в том, что горные породы подвергаются разрушению, а продукты выветривания (в том числе растворимые в воде питательные вещества) сносятся потоками воды в Мировой океан, где они образуют морские напластования и лишь частично возвращаются на сушу с осадками. Геотектонические изменения, процессы опускания материков и поднятия морского дна, перемещения морей и океанов в течение длительного времени приводят к тому, что эти напластования возвращаются на сушу и процесс начинается вновь.

Малый круговорот (часть большого) происходит на уровне экосистемы и состоит в том, что питательные вещества, вода и углерод аккумулируются в веществе растений, расходуются на построение тела и на жизненные процессы как самих этих растений, так и других организмов (как правило животных), которые поедают эти растения (консументы). Продукты распада органического вещества под действием деструкторов и микроорганизмов (бактерии, грибы, черви) вновь разлагаются до минеральных компонентов, доступных растениям и вовлекаемых ими в потоки вещества.

Круговорот химических веществ из неорганической среды через растительные и животные организмы обратно в неорганическую среду с использованием солнечной энергии и энергии химических реакций называется биогеохимическим циклом. В такие циклы вовлечены практически все химические элементы и прежде всего те, которые участвуют в построении живой клетки. Так, тело человека состоит из кислорода (62,8%), углерода (19,37%), водорода (9,31%), азота (5,14%), кальция (1,38%), фосфора (0,64%) и ещё примерно из 30 элементов.

 

 

 

 

 

 

 

 

 

 

 

2. Взаимоотношения организма и среды

 

Звучит банально, но самая главная и важная закономерность в системе "среда-организм" - это неразрывная связь и взаимное влияние среды и организма. Как организм испытывает воздействие среды (действие комплекса экологических факторов), так и среда претерпевает изменения в результате воздействия живых организмов. Мы уже обсуждали, что облик Земли был бы совсем иным, если бы на планете не было жизни (в атмосфере не было бы кислорода, не было бы такого явления как почва и так далее). Подробнее эти вопросы мы будем рассматривать на уроках по глобальной (биосферной) экологии.

Указанная выше основная закономерность системы "среда-организм" была сформулирована еще В. И. Вернадским и получила название закона единства организма и среды его обитания:

- жизнь развивается в результате постоянного обмена веществом и информацией на базе потока энергии в совокупном единстве среды и населяющих ее организмов.

Не смотря на некоторую сложность языка Вернадского, смысл этой закономерности очевиден: в совокупном единстве среды и населяющих ее организмов (в глобальном масштабе - в биосфере) происходит постоянный обмен веществом и информацией, что и делает возможным существование жизни.

Из этого следует простой эволюционно-экологический принцип: вид организмов может существовать до тех пор и постольку, поскольку окружающая его среда соответствует генетическим возможностям приспособления этого вида к ее колебаниям и изменениям. Мы неоднократно говорили о проявлении этой закономерности, когда указывали на комплекс специфических адаптаций к тем или иным условиям среды.

Воздействие вида на среду является важной экологической закономерностью. Вернадский отмечал, что такое воздействие эволюционно возрастает. Эта закономерность была сформулирована в виде закона максимума биогенной энергии (энтропии) Вернадского-Бауэра:

Любая биологическая система, находясь в подвижном равновесии с окружающей ее природной средой и эволюционно развиваясь, увеличивает свое воздействие на среду. Давление на среду растет до тех пор, пока не будет строго ограничено внешними факторами: надсистемами или другими конкурентными системами.

В действии экологических факторов на организм мы отмечали как главную закономерность возможность выделения оптимальных и пессимальных (критических) доз действия фактора. Однако к такому понятию как "оптимум фактора" нельзя подходить с механистических позиций, в природе все намного сложнее. Это нашло выражение в законе неоднозначности действия фактора на организм: любой экологический фактор неодинаково влияет на функции организма; оптимум фактора для одних физиологических процессов может отличаться от такового для других процессов. Так, любой специалист по физиологии растений скажет, что температурный оптимум для фотосинтеза и дыхания во многих случаях различен.

Недостаток некоторых экологических факторов может быть компенсирован другим фактором. Например, некоторый недостаток света может быть компенсирован для растений обилием углекислого газа. Однако такая компенсация возможна лишь в определенных пределах. Сколько бы углекислого газа ни было, но в полной темноте фотосинтез все равно не пойдет.

Существование лимитирующих факторов, описанное Либихом, нашло свое отражение в законе ограничивающих факторов Блэкмана и законе толерантности Шелфорда. Факторы среды, имеющие в конкретных условиях пессимальное значение, особенно затрудняют возможность существования вида в данных условиях, вопреки и несмотря на оптимальное сочетание других отдельных факторов. Главное отличие законов Блэкмана и Шелфорда от Либиховских правил состоит в том, что этими учеными было показано: не только недостаток фактора, но и его избыток могут затруднять развитие организма.

И в заключении хочется указать на еще одну закономерность действия экологических факторов на организм, имеющую важное прикладное значение. Как мы отмечали в одном из предыдущих уроков, теоретическим основанием для расчета ПДК является представление о лимитирующих факторах. Важной проблемой является не только необходимость учета взаимодействия факторов, их синергетического (взаимно усиливающего) действия. Необходимо определиться с понятием порога вредного действия, то есть начиная с каких доз фактора можно говорить о его вредном воздействии на здоровье.

Информация о работе Круговорт веществ в биосфере