Автор работы: Пользователь скрыл имя, 27 Февраля 2013 в 13:39, доклад
В конце XIX века на Всемирной выставке в Париже изобретатель О. Мушо демонстрировал инсолятор - аппарат, который при помощи зеркала фокусировал лучи на паровом котле. Котел приводил в действие печатную машину, печатавшую по 500 оттисков газеты в час. Через несколько лет в США построили подобный аппарат мощностью в 15 лошадиных сил.
Солнечные батареи.
Первые солнечные батареи, способные
преобразовывать солнечную
Паровой котел на солнечной энергии, приводящий в движение печатный станок.
Подходили годы, инсоляторы использующие
солнечную энергию
Еще в 70-х годах 19 века был открыт так называемый фотоэлектрический эффект - явление, связанное с освобождением электронов твердого тела или жидкости под действием электромагнитного излучения. В 30-х годах глава физиков нашей страны академик А. Ф. Иоффе высказал мысль о использовании полупроводниковых фотоэлементов в солнечной энергетике. Правда, рекордный коэффициент полезного действия (КПД) тогдашних материалов не превышал 1 процента, то есть, в электричество превращалась лишь сотая часть световой энергии. После многолетних экспериментов удалось создать фотоэлементы с КПД до 10-15%. Затем американцы построили солнечные батареи современного типа. В 1959 году они были установлены на одном из первых искусственных спутников Земли, и с тех пор все космические станции оснащаются многометровыми панелями с солнечными батареями. Низкий КПД солнечных батарей можно было бы компенсировать большой площадью, например, покрыть всю пустыню Сахару фотоэлементами - и готова мощнейшая солнечная электростанция. Однако кремниевые полупроводники, на основе которых производятся солнечные батареи, очень дорого стоят. И чем выше КПД, тем дороже материалы. Вследствие этого доля солнечной энергии в сегодняшней энергетике невелика. Однако в связи с не бесконечностью ископаемого топлива, доля энергии получаемой солнечными батареями будет неминуемо возрастать. Так же росту использования солнечных батарей способствуют разработки направленные на повышение КПД и понижение их стоимости.
Одно из главных достоинств солнечной энергии - ее экологическая чистота. Правда, соединения кремния могут наносить небольшой вред окружающей среде, однако по сравнению с последствиями сжигания природного топлива такой ущерб - капля в море.
Полупроводниковые солнечные батареи
имеют очень важное достоинство
- долговечность. При том, что уход
за ними не требует от персонала
особенно больших знаний. Вследствие
этого солнечные батареи
Сегодня уже разрабатываются проекты
строительства солнечных
Большое количество научных экспериментов и тонких технологий требуют подчас создания огромной температуры. Идеальный вариант - солнечная энергия, способная создавать гигантские температуры на небольшой площади. Самая известная "солнечная печь" действует во французском местечке Одило. Ее подвижные зеркала концентрируют энергию солнца с большой площади на площадке менее одного квадратного метра. Эта площадка находится на небольшой башне перед системой зеркал. В ясные дни в фокусе зеркал удается достигнуть температуры в 3300°С. С ее помощью в Одило создают материалы с особенными свойствами, которые невозможно получить в традиционной металлургии.
Использование энергии солнца
1. Первая промышленная солнечная электростанция была построена в 1985 году в СССР в Крыму, недалеко от города Щелкино. СЭС-5 имела пиковую мощность 5 МВт. Столько же, сколько у первого ядерного реактора. За 10 лет работы она выработала всего 2 миллиона кВт.час электроэнергии, однако стоимость ее электричества оказалась довольно высокой, и в середине 90-х ее закрыли. В это время работы активизировались в Штатах, где компания Loose lndustries в самом конце 1989 года запустила 80-мегаваттную солнечно-газовую электростанцию. За следующие 5 лет та же компания, только в Калифорнии, построила таких СЭС еще на 480 МВт и довела стоимость одного «солнечно-газового» кВт.часа до 7-8 центов. Что совсем неплохо по сравнению с 15 центами за кВт.час энергии - во столько обходится электричество, производимое на АЭС.
2. Использовать энергию Солнца
в быту можно и без
3. Однако встречаются и более серьезные системы. Одна из таких была сооружена в США в штате Нью-Мексико еще в 1978 году и работает до сих пор. Называется - Национальная солнечная установка для тепловых испытаний (NSTTF). Принадлежит она Пентагону и применяется для проверки жаропрочности корпусов военных и гражданских ракет. Состоит NSTTF из 60-метровой башни-мишени и 220 гелиостатов, размером 6х6 метров каждый. Зеркала, подобно архимедовой установке, направляют свои солнечные зайчики в одно полутораметровое пятнышко на верхушке установки, где температура в солнечные дни поднимается до 2 000°С. Всего в 2,5 раза меньше, чем на поверхности Солнца, и в 2 раза выше температуры горения напалма. Установка имеет площадь зеркал 8 500 м2 и тепловую мощность 5 МВт. [5]
4. Республике
Корея в 2008 году было установлено
274 мегаватта мощности солнечных
панелей. Это сравнимо с
5. Еще
больше прогресс в Японии, где
суммарная мощность солнечных
электростанций приближается
Как работают солнечные панели
Наиболее
эффективными с энергетической точки
зрения устройствами для превращения
солнечной энергии в
Способы получения электричества и тепла из солнечного излучения
1. Получение электроэнергии с помощью фотоэлементов.
2. Преобразование
солнечной энергии в
3. паровые
машины (поршневые или турбинные),
использующие водяной пар,
4. двигатель Стирлинга и т. д.
5. гелиотермальная энергетика
— Нагревание поверхности,
6. Термовоздушные электростанции
(преобразование солнечной
7. Солнечные аэростатные
Фотоэлемент — электронный прибор, который преобразует энергию фотонов в электрическую энергию. Первый фотоэлемент, основанный на внешнем фотоэффекте, создал Александр Столетов в конце XIX века.
Фотоэлемент на основе поликристаллического кремния
Физический принцип работы фотоэлемента
Преобразование энергии в ФЭП основано на фотоэлектрическом эффекте, который возникает в неоднородных полупроводниковых структурах при воздействии на них солнечного излучения.
Неоднородность структуры ФЭП может быть получена легированием одного и того же полупроводника различными примесями (создание p-n переходов) или путём соединения различных полупроводников с неодинаковой шириной запрещённой зоны - энергии отрыва электрона из атома (создание гетеропереходов), или же за счёт изменения химического состава полупроводника, приводящего к появлению градиента ширины запрещённой зоны (создание варизонных структур). Возможны также различные комбинации перечисленных способов.
Эффективность преобразования зависит
от электрофизических
Основные необратимые потери энергии в ФЭП связаны с:
· отражением солнечного излучения от поверхности преобразователя,
· прохождением части излучения через ФЭП без поглощения в нём,
· рассеянием на тепловых колебаниях решётки избыточной энергии фотонов,
· рекомбинацией образовавшихся фото-пар на поверхностях и в объёме ФЭП,
· внутренним сопротивлением преобразователя,
· и некоторыми другими физическими процессами.
Для уменьшения всех видов потерь
энергии в ФЭП разрабатываются,
и успешно применяется
· использование полупроводников с оптимальной для солнечного излучения шириной запрещённой зоны;
· направленное улучшение свойств
полупроводниковой структуры
· переход от гомогенных к гетерогенным и варизонным полупроводниковым структурам;
· оптимизация конструктивных параметров ФЭП (глубины залегания p-n перехода, толщины базового слоя, частоты контактной сетки и др.);
· применение многофункциональных оптических покрытий, обеспечивающих просветление, терморегулирование и защиту ФЭП от космической радиации;
· разработка ФЭП, прозрачных в длинноволновой области солнечного спектра за краем основной полосы поглощения;
· создание каскадных ФЭП из специально подобранных по ширине запрещённой зоны полупроводников, позволяющих преобразовывать в каждом каскаде излучение, прошедшее через предыдущий каскад, и пр.;
Также существенного повышения КПД ФЭП удалось добиться за счёт создания преобразователей с двухсторонней чувствительностью (до +80 % к уже имеющемуся КПД одной стороны), применения люминесцентно переизлучающих структур, предварительного разложения солнечного спектра на две или более спектральные области с помощью многослойных плёночных светоделителей (дихроичных зеркал) с последующим преобразованием каждого участка спектра отдельным ФЭП и т. д.
Фотоэлектрический эффект - явление испускания электронов веществом под действием света. Было открыто в 1887 Г.Герцем, обнаружившим, что искровой разряд в воздушном промежутке легче возникает при наличии поблизости другого искрового разряда. Герц экспериментально показал, что это связано с ультрафиолетовым излучением второго разряда. В 1889 Дж.Томсон и Ф.Ленард установили, что при освещении поверхности металла в откачанном сосуде она испускает электроны. Продолжая эти исследования, Ленард продемонстрировал в 1902, что число электронов, вылетающих в 1 с с поверхности металла, пропорционально интенсивности света, тогда как их энергия зависит лишь от световой длины волны, т.е. цвета. Оба эти факта противоречили выводам теории Максвелла о механизме испускания и поглощения света. Согласно этой теории, интенсивность света служит мерой его энергии и, конечно, должна влиять на энергию испускаемых электронов.