Автор работы: Пользователь скрыл имя, 23 Октября 2013 в 17:56, курсовая работа
В данной курсовой работе рассмотрено загрязнение атмосферного воздуха, его виды, причины и источники. Детально рассмотрены методы и способы очистки воздуха от вредных примесей, в том числе промышленная и санитарная очистка. Приведена классификация систем очистки воздуха.
Введение
Глава 1. Обзор литературы
.1Борьба с загрязнением атмосферы. Способы очистки промышленных выбросов
.1.1Промышленная и санитарная очистка
1.1.2Биологический способ очистки атмосферного воздуха
.1.3Классификация газоочистного и пылеулавливающего оборудования
Глава 2. Материалы и методы исследований
.1Классификация систем очистки воздуха и их параметры
.1.1Системы очистки воздуха от пыли
2.1.2Системы очистки воздуха от туманов
.1.3Системы очистки воздуха от газопарообразных примесей
.1.4Метод абсорбции и адсорбции
Глава 3. Результаты исследований и их анализ
Заключение
Библиографический список
надежная и бесперебойная
все установки очистки газа должны быть зарегистрированы в органах Минприроды РБ, иметь паспорт, журнал учета работы и неисправностей;
установки должны подвергаться проверке на эффективность периодически (не реже одного раза в год) с оформлением соответствующего акта.
Установки, предназначенные для очистки выбросов с токсичными примесями, проверяют на эффективность не реже 2-х раз в год. При переходе установки на новый режим работы (постоянный), при работе на измененном режиме более 3-х месяцев, после капремонта или реконструкции установки, после строительства.
Кроме того, газоочистное оборудование
характеризуется величиной
В соответствии с ГОСТ 12.2.043-80 пылеулавливающее оборудование в зависимости от способа отделения пыли от газовоздушного потока делится на сухое, когда частицы пыли осаждаются на сухую поверхность, и мокрое, когда отделение частиц пыли производится с использованием жидкостей.
Пылеулавливающее оборудование по принципу действия подразделяется на группы, а по конструктивным особенностям на виды, которые представлены в таблице 1.
Таблица1?Классификация
Группа оборудованияВид
Методы и средства защиты атмосферы.
Основные методы защиты атмосферы от химических примесей
Все известные методы и средства защиты атмосферы от химических примесей можно объединить в три группы. В первую группу входят мероприятия, направленные на снижение мощности выбросов, т.е. уменьшение количества выбрасываемого вещества в единицу времени. Во вторую группу входят мероприятия, направленные на защиту атмосферы путем обработки и нейтрализации вредных выбросов специальными системами очистки. В третью группу входят мероприятия по нормированию выбросов как на отдельных предприятиях и устройствах, так и в регионе в целом.
Для снижения мощности выбросов химических примесей в атмосферу наиболее широко используют:
замену
менее экологичных видов
сжигание топлива по специальной технологии;
создание замкнутых производственных циклов.
В первом случае применяют топливо с более низким баллом загрязнения атмосферы. При сжигании различных топлив такие показатели, как зольность, количество диоксида серы и оксидов азота в выбросах, могут сильно различаться между собой, поэтому введен суммарный показатель загрязнения атмосферы в баллах, который отражает степень вредного воздействия на человека. Так, для сланцев он равен 3,16, подмосковного угля - 2,02, экибастузского угля - 1,85, березовского угля - 0,50, природного газа - 0,04.
Сжигание топлива по особой технологии осуществляется либо в кипящем (псевдоожиженном) слое, либо с предварительной их газификацией.
Для уменьшения мощности выброса серы твердое, порошкообразное или жидкое топливо сжигают в кипящем слое, который формируется из твердых частиц золы, песка или других веществ: инертных или реакционно-способных. Твердые частицы вдуваются в проходящие газы, где они завихряются, интенсивно перемешиваются и образуют принудительно равновесный поток, который в целом обладает свойствами жидкости.
Предварительной газификации подвергаются уголь и нефтяные топлива, однако на практике чаще всего применяют газификацию угля. Поскольку в энергетических установках получаемый и отходящий газы могут быть эффективно очищены, то концентрации диоксида серы и твердых частиц в их выбросах будут минимальными.
Одним из перспективных способов защиты атмосферы от химических примесей является внедрение замкнутых производственных процессов, которые сводят к минимуму выбрасываемые в атмосферу отходы, вторично используя их и потребляя, т. е. превращая их в новые продукты.
Глава 2. Материалы и методы исследований
2.1Классификация систем очистки воздуха и их параметры
По агрегатному состоянию
Системы очистки воздуха от пыли делятся на четыре основные группы: сухие и мокрые пылеуловители, а также электрофильтры и фильтры.
Рисунок 1 - Системы и методы очистки вредных выбросов
2.1.1Системы очистки воздуха от пыли
Хотя имеет место многообразие конструкций пылеуловителей, все они основаны на принципах осаждения взвешенной фазы. Пылегазовые смеси представляют собой аэродисперсную систему, в которой дисперсная фаза (пылинки) распределены в дисперсионной среде (газе). Движущими силами процесса осаждения пыли являются: сила тяжести частиц и сила диффузии частиц вследствие броуновского движения. Гравитационным полем (силой тяжести) осаждаются только относительно крупные частицы пыли. Поэтому пылеуловители базируются на использовании силового поля, которое необходимо создать искусственно (силы инерции при изменении направления и скорости пылегазового потока; электрического притяжения заряженных частиц к осадительному электроду; процесс коагуляции - образование элемента из нескольких частиц; фильтрование газа через пористые перегородки). Чтобы не допустить обратного процесса, мешающего пылеулавливанию (возвращение осевших частиц обратно в поток газа), принимаются специальные меры: смачивание осадительной поверхности, снижение скорости потока, повышение его влажности.
При повышенном содержании пыли в воздухе используют пылеуловители и электрофильтры. Фильтры применяют для тонкой очистки воздуха с концентрацией примесей менее 100 мг/м3.
2.1.2Системы очистки воздуха от туманов
Для очистки воздуха от туманов (например, кислот, щелочей, масел и др. жидкостей) используют системы фильтров, называемых туманоуловителями.
Средства защиты воздуха от газопарообразных примесей зависят от выбранного метода очистки. По характеру протекания физико-химических процессов выделяют метод абсорбции (промывка выбросов растворителями примеси), хемосорбции (промывка выбросов растворами реагентов, связывающих примеси химически), адсорбции (поглощение газообразных примесей за счет катализаторов) и термической нейтрализации.
Все процессы извлечения из воздуха взвешенных частиц включают, как правило, две операции: осаждение частиц пыли или капель жидкости на сухих или смоченных поверхностях и удаление осадка с поверхностей осаждения. Основной операцией является осаждение, по ней собственно и классифицируются все пылеуловители. Однако вторая операция, несмотря на кажущуюся простоту связана с преодолением ряда технических трудностей, часто оказывающих решающее влияние на эффективность очистки или применимость того или иного метода. Хотя имеет место многообразие конструкций пылеуловителей, все они основаны на принципах осаждения взвешенной фазы. Пылегазовые смеси представляют собой аэродисперсную систему, в которой дисперсная фаза (пылинки) распределены в дисперсионной среде (газе). Движущими силами процесса осаждения пыли являются: сила тяжести частиц и сила диффузии частиц вследствие броуновского движения. Гравитационным полем (силой тяжести) осаждаются только относительно крупные частицы пыли. Поэтому пылеуловители базируются на использовании силового поля, которое необходимо создать искусственно (силы инерции при изменении направления и скорости пылегазового потока; электрического притяжения заряженных частиц к осадительному электроду; процесс коагуляции - образование элемента из нескольких частиц; фильтрование газа через пористые перегородки). Чтобы не допустить обратного процесса, мешающего пылеулавливанию (возвращение осевших частиц обратно в поток газа), принимаются специальные меры: смачивание осадительной поверхности, снижение скорости потока, повышение его влажности.
Выбор того или иного пылеулавливающего устройства, которое представляет систему элементов, включающую пылеуловитель, разгрузочный агрегат, регулирующее оборудование и вентилятор, предопределяется дисперсным составом улавливаемой частицы промышленной пыли. Поскольку частицы имеют разнообразную форму (шарики, палочки, пластинки, игла, волокна и т.д.), то для них понятие размера условно. В общем случае принято характеризовать размер частицы величиной, определяющей скорость ее осаждения, - седиментационным диаметром. Под ним подразумевают диаметр шара, скорость осаждения и плотность которого равны скорости осаждения и плотности частиц.
2.1.3Системы очистки воздуха от газопарообразных примесей
Для
очистки выбросов от жидких и твердых
примесей применяют различные
инерционного
осаждения путем резкого
осаждения под действием гравитационных сил из-за различной кривизны траекторий движения составляющих выброса (газов и частиц), вектор скорости, движения которого направлен горизонтально;
осаждения
под действием центробежных сил
путем придания выбросу вращательного
движения внутри циклона, при этом твердые
частицы отбрасываются
механической фильтрации - фильтрации выброса через пористую перегородку (с волокнистым, гранулированным или пористым фильтрующим материалом), в процессе которой аэрозольные частицы задерживаются, а газовая составляющая полностью проходит через нее.
Системы и аппараты пылеулавливания.
Сухие пылеуловители. К сухим пылеуловителям относятся такие, в которых очистка движущегося воздуха от пыли происходит механически под действием сил гравитации и инерции. Эти системы называются инерционными, так как в них при резком изменении направления движения газового потока частицы пыли, по инерции сохраняя направление своего движения, ударяются о поверхность, теряют свою энергию и под действием сил гравитации осаждаются в специальном бункере.
Для сухой очистки газов наиболее употребительны центробежные обеспыливающие системы (циклоны) (рисунок 2).Газовый поток, попадая во внутренний корпус циклона 1 через патрубок 2, совершает вращательно-поступательное движение вдоль корпуса по направлении к бункеру 4. Под действием сил инерции частицы пыли осаждаются на стенках корпуса, а затем попадают в бункер. Очищенный газовый поток выходит из бункера через патрубок 3. Особенностью таких систем очистки является обязательная герметичность бункера, в противном случае из-за подсоса воздуха осаждаемые частицы пыли падают в выходную трубу.
Рисунок 2 - Циклон
На практике используют разные системы подачи и удаления воздуха и пылеосаждения. В зависимости от конструктивного исполнения различают циклоны:
осевые, в корпусе которых входящие и выходящие потоки газа движутся вдоль его оси, при этом они могут двигаться в одном направлении (прямоточные) или в противоположных (противоточные);
с тангенциальным входом, при этом входящий газ движется по касательной к окружности поперечного сечения корпуса аппарата и перпендикулярно к оси корпуса;
с винтовым входом, при этом движение входящего потока газа приобретает винтовой характер с помощью тангенциального входного патрубка и верхней крышки с винтовой поверхностью;
со спиральным входом, когда соединение выпускного патрубка с корпусом аппарата выполнено спиральным.
В общем случае частицы пыли выделяются в циклоне под действием центробежной силы в процессе вращения газового потока в корпусе аппарата. В промышленности используют циклоны, рассчитанные на скорость газового потока от 5 до 20 м/с. Эффективность их зависит от концентрации пыли и размеров ее частиц и резко снижается при уменьшении этих показателей. Средняя эффективность обеспыливания газов в циклонах составляет 0,98 при размере частиц пыли 30-40 мкм, 0,8 - при 10 мкм, 0,6 - при 4-5 мкм. Производительность циклонов лежит в диапазоне от нескольких сот до десятков тысяч кубических метров в час. Преимущество циклонов - простота конструкции, небольшие размеры, отсутствие движущихся частей; недостатки - затраты энергии на вращение и большой абразивный износ частей аппарата пылью.
Кроме циклонов, применяются и другие
типы сухих пылеуловителей, например
ротационные, вихревые, радиальные. При
общих принципах действия они
различаются системами
Мокрые пылеуловители. Особенностью этих систем очистки является высокая эффективность очистки от мелкодисперсной пыли (менее 1,0 мкм). Эти системы обеспечивают возможность очистки от пыли горячих и взрывоопасных газов. Эти системы работают по принципу осаждения частиц пыли на поверхность капель (или пленки) жидкости под действием сил инерции и броуновского движения. Конструктивно мокрые пылеуловители разделяют на форсуночные скрубберы и скрубберы Вентури, а также аппараты ударно-инерционного и барботажного и других типов (рисунок 3).
Рисунок 3 - Классификация мокрых пылеуловителей
Наибольшее практическое применение находят скрубберы Вентури, (аппарат для промывки жидкостью газов в целях извлечения из них отдельных компонентов) которые работают следующим образом. Через патрубок 4 газ подается в устройство 2, которое называется соплом Вентури. Сопло Вентури имеет конфузор (сужение), в который через форсунки 1 подается вода на орошение. В этой части сопла скорость газа увеличивается, достигая максимума в самом узком сечении (с 10...20 до 100...150 м/с).