УчениT о биосфере

Автор работы: Пользователь скрыл имя, 05 Февраля 2013 в 16:21, контрольная работа

Описание

Известно, что к 2000 году население Земли достигло шести миллиардов человек. Для их жизнеобеспечения необходимо ежегодно добывать миллиарды тонн сырьевых ресурсов, вырабатывать гигантское количество энергии, получать громадные объемы сельскохозяйственной продукции. И любой вид производственной деятельности человека – будь то промышленность, энергетика, транспорт или выращивание урожая – обязательно влечет за собой загрязнение природной среды.

Содержание

Введение…………………………………………………………………… 2
1. Антропогенная токсикация биосферы…………………………………3
1.1. Неорганические токсины……………………………………………4
1.2. Органические токсины………………………………………….. ...10
1.3. Кислотные дожди…………………………………………………..14
Заключение………………………………………………………………..18
Список используемой литературы……………………………………… 20

Работа состоит из  1 файл

Контрольная работа по Учению о биосфере.docx

— 47.96 Кб (Скачать документ)

Содержание

Введение…………………………………………………………………… 2

1. Антропогенная токсикация биосферы…………………………………3

   1.1. Неорганические токсины……………………………………………4

   1.2. Органические токсины………………………………………….. ...10

   1.3. Кислотные дожди…………………………………………………..14

Заключение………………………………………………………………..18

Список используемой литературы……………………………………… 20 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Введение

          Известно, что к 2000 году население Земли достигло шести миллиардов человек. Для их жизнеобеспечения необходимо ежегодно добывать миллиарды тонн сырьевых ресурсов, вырабатывать гигантское количество энергии, получать громадные объемы сельскохозяйственной продукции. И любой вид производственной деятельности человека – будь то промышленность, энергетика, транспорт или выращивание урожая – обязательно влечет за собой загрязнение природной среды.  Научные прогнозы говорят о том, что к середине ХХI столетия численность землян достигнет, как минимум, 10-ти миллиардов человек. Хочется надеяться, что качество их жизни будет выше, чем сегодня у жителей слаборазвитых стран: будет потребляться больше пищи, энергии, товаров на душу населения.         

 Значит, если не принять  действенных своевременных мер,  антропогенная токсикация планеты через полвека может достичь уровня, с которым природа не сможет справиться, и экологический кризис превратится в глобальную катастрофу. Слово «катастрофа» ассоциируется с понятием неожиданности, внезапности. Природные экологические катастрофы (землетрясения, смерчи, тайфуны, лавины) дополняются антропогенными (Чернобыль, заводские взрывы, аварийные выбросы ядовитых веществ). Существуют, однако, и медленно развивающиеся экологические катастрофы, приобретающие со временем глобальный характер. Медленное развитие придает им особую опасность, пожалуй, не меньшую, чем внезапность. Общественное сознание не поражают, а человечество не мобилизуют на немедленные действия факты постепенного роста некоторых заболеваний, повышение кислотности дождей, снижение урожайности почв, уменьшения фертильности мужской спермы и другие подобные явления, признанные экологическим следствием производственной деятельности человечества. Одной из таких медленно развивающихся катастроф является токсикация нашей планеты.

         1. Антропогенная токсикация биосферы         

 По данным А.Ф. Коломийца, количество произведенных и находящихся в окружающей нас среде (атмосфера, вода, почва) токсичных хлорорганических веществ достаточно для уничтожения всех аэробных (потребляющих кислород) организмов, малую долю которых и по численности и по массе составляет человечество. Для токсичных веществ, присутствующих в окружающей среде, были введены термины «экотоксины» и «суперэкотоксины».           

Токсичны многие вещества – и органические, и  неорганические. Некоторые из этих веществ – целевые продукты человеческой деятельности, обладающие ценными техническими свойствами. Другие – малые, порой ничтожные примеси веществ, образующихся при производстве энергии, материалов, пищи. Токсичные вещества попадают в окружающую среду и либо надолго задерживаются в почвах, либо с водотоком или с ветром распространяются на сотни и тысячи  километров от места их образования. С водой, воздухом и пищей токсины попадают в организм животных и человека, что приводит к негативным последствиям – от острого отравления со смертельным исходом до проявляющихся через годы заболеваний. Порой эти последствия проявляются в следующем поколении. Многочисленные статистические данные свидетельствуют об ухудшении генофонда, увеличении количества детей с теми или иными отклонениями от физиологической или психической нормы. И не так уж сгущают краски те ученые, которые предупреждают об опасности дегенерации человека как биологического вида до дебилов и уродов в результате глобальной токсикации планеты. Но и те специфические и неспецифические заболевания, которые поражают нас сегодня из-за хронической токсикации, приводят как минимум к снижению качества жизни.

 

 

          1.1. Неорганические  токсины          

Существует 13 видов токсичных  металлов: Be, Al, Cr, As, Se, Ag, Cd, Sn, Sb, Ba, Hg, Tl, Pb. В перечне присутствует и издревле известный как яд мышь- як (As), и считавшийся до недавнего времени нетоксичным алюминий (Al), и представляющая особую угрозу тройка: кадмий (Cd), свинец (Pb), ртуть (Hg), по праву возглавляющая группу неорганических экотоксинов.         

 Когда в рекламе  водоочистителей сообщают об  эффективном удалении из воды  тяжелых металлов, имеются в виду  ионы свинца, кадия, ртути. Эти  металлы и их соединения применяются  в технике, что и «открыло  им дорогу» в окружающую среду  и живые организмы.         

 Свинец (Pb) применялся еще с древних времен (глазури для покрытия глиняной посуды, прокладки для водопроводов). В настоящее время перечень областей применения очень широк: производство электрических кабелей, свинцовых аккумуляторов, химическое машиностроение, атомная промышленность (для защиты от излучения), производство хрусталя, эмалей, замазок, лаков, спичек, пиротехнических изделий, пластмасс (в качестве стабилизатора) и т. д. Объем современного производства свинца составляет более 2,5 млн. т в год.         

 В результате производственной  деятельности в природные воды  ежегодно попадает 500-600 тыс. т  Pb, а через атмосферу на поверхность Земли оседает около 400 тыс. т. В воздух основная часть Pb (206 тыс. т) выбрасывается с выхлопными газами автотранспорта, меньшая (~ 30 тыс. т) – при сжигании каменного угля. Оба эти источника выбросов Pb в воздух связаны с производством энергии, с ростом которого возрастает и содержание Pb в воздухе городов (~ 5% в год). Если подсчитать, то за 14 лет происходит удвоение количества Pb в воздухе. В атмосфере Pb находится в виде тонких аэрозолей различных соединений свинца. В районах оживленных автомагистралей их содержание достигает 40 мкг/м. Опыты с лабораторными животными (мыши, крысы, кролики) показали, что при ежедневном 6-часовом воздействии оксидов свинца в концентрации 10 мкг/м через 6 месяцев наблюдается 10-кратное увеличение содержание свинца в костном скелете, изменение условно-рефлекторной деятельности, активности некоторых ферментов и гистологической структуры головного и спинного мозга. При меньших воздействиях, не вызывающих изменений в крови и нервной системе, наблюдалось увеличение массы семенников и предстательной железы, нарушение сперматогенеза: появление патологических форм сперматозоидов, снижение их подвижности, а у самок – дегенеративные изменения в яйцеклетках. У потомства таких крыс на 30% была уменьшена масса тела и на 67% - выживаемость. При хронической токсикации свинцом у людей происходят изменения состояния нервной системы, проявляющиеся в головной боли, головокружениях, повышенной утомляемости, раздражительности, в нарушениях сна, ухудшении памяти, мышечной гипотонии, потливости. Недавно ученые США пришли к заключению, что таксикация свинцом – причина агрессивного поведения школьников и снижения их способности к обучению. Полагают также, что длительная токсикация организма свинцом способствуют развитию атеросклероза.         

 В тех странах, где  использование бензина с добавками  тетраэтилсвинца сведено к минимуму, содержание Pb в воздухе снижено многократно. В России же сейчас только 25% бензина производится без этих добавок. Из приземного воздуха происходит оседание свинца на почву. В случае кислотных дождей проникновение Pb в почву происходит намного интенсивнее. Через корневую систему ионы трансформируются, а наземную часть растений. Среднее содержание Pb в большинстве растений составляет 2-3 мг/кг. Меньше всего свинца в бобовых, больше всего в кабачках.

          Что касается другого токсиканта из неорганической «мрачной тройки» - кадмия (Cd), то на его опасность, можно сказать, указывает сам химический символ: «Cd» курильщикам следует читать как аббревиатуру английского Cancer diseast – раковое заболевание. Рак легких – вероятный результат длительного воздействия аэрозоля оксида Cd, поступающего в альвеолы с табачным дымом. Более четверти летальных исходов онкологических больных происходит от рака легких. Среди заболевших 80 - 90%  - курильщики. Табак – растение, в наибольшей мере аккумулирующее соли Cd из почвы, до 2 мг/кг. Это во много раз превышает предельно допустимое содержание  Cd в основных продуктах питания.

          С пищей, водой и воздухом ежедневно в организм поступает до 0,2 мг Cd, большая часть с пищей, меньшая с водой и воздухом. Однако усвоение – всасывание в кровь водно-пищевого Cd находится на уровне 5%, а воздушного – до 80%. По этой причине содержание Cd в организме жителей крупных городов с их загрязненной атмосферой может быть в десятки-сотни раз больше, чем у жителей сельской местности. В воздух кадмий поступает из общих со свинцом источников – сжигание ископаемых топлив ТЭЦ, с газовыми выбросами предприятий, производящих или использующих Cd. Оседание Cd-аэрозолей на почвы дополняется внесением Cd в почву сельскохозяйственных угодий с минеральными удобрениями: суперфосфатом (7,2 мг/кг), фосфатом калия (4,7 мг/кг), селитрой (0, 7 мг/кг). Заметно содержание Cd в навозе. Попадая с неочищенными стоками промышленных предприятий в природные водоемы, растворенный Cd осаждается и накапливается в донных отложениях. Водоросли, моллюски и ракообразные концентрируют Cd в своих организмах. Подобно свинцу и ртути, кадмий не является жизненно необходимым металлом.         

 Содержание Cd в земной коре очень мало, поэтому не существует залежей руд кадмия, он входит малой долей (~0,1%) в полиметаллические руды свинца, серебра, цинка. Это не помешало техническому применению Cd в некоторых отраслях техники ХХ века: для создания никель-кадмиевых аккумуляторов и бытовых батареек, аварийных и регулирующих стержней для атомных реакторов. Как составная часть Cd  входит в сплавы, катализаторы, лазерные материалы, красители, стабилизаторы. Используют Cd и как антикоррозионное и декоративное покрытие изделий из железа и сталей.          

Ртуть (Hg)  в основном применяется в электротехнической и электрохимической промышленности, в качестве жидкого электрода в ртутных выпрямителях тока, обновляющегося катода при электролизном получении щелочи и хлора. Иные применения Hg (лабораторные приборы, лекарственные препараты, фунгициды) год за годом становятся все менее масштабными из-за опасности Hg-токсикации.         

 О токсичности соединений  Hg, в частности сулемы, было известно уже давно. Сама же жидкая Hg не обладает выраженными токсическими свойствами. В прошлом ее использовали для лечения кишок. Пары Hg губительно действуют на организм, поражая нервную систему. В непроветриваемом помещении, где находится жидкая ртуть, воздух содержит ~10 мг/м . Хроническое отравление Hg происходит уже при содержании Hg в сотых долях мг/м . Развивающееся при этом заболевание – микромеркуриализм проявляется в быстрой утомляемости, повышенной возбудимости с последующим ослаблением памяти, неуверенностью в себе, раздражительности, головных болях, дрожании конечностей. Признаки микромеркуриализма часты среди научных сотрудников, проработавших 8 – 10 лет в лабораторном помещении с содержанием Hg в воздухе на уровне 10–2  мг/м . Эта цифра – ПДК для рабочей зоны, т.е. для лиц, имеющих профессиональный контакт с Hg. Попадая в воду, Hg, казалось бы, должна оставаться неизменной. По этой причине сбрасывание жидкой Hg в воду не рассматривалось прежде как экологическое преступление. Затем выяснилось, что существуют водные микроорганизмы, способствующие переводу Hg в диметилртуть. Продвижение по пищевой цепи приводило к накоплению Hg в организмах хищных рыб – тунца, лососевых до уровня, сделавшего их непригодными для потребления. Изгнание Hg из жизненного обихода и промышленности продолжается и по сей день. Однако освободить атмосферу, воды и почвы от загрязнений Hg не удастся. Примерно половина выбросов Hg в окружающую среду природного происхождения обусловлена дегазацией земной коры, содержащей ~0,5 мг Hg/кг. По этой причине Hg – микроэлемент, постоянно присутствующий в организме (~10 мг), в основном, как и Cd, в почках и печени. При поступлении в легкие в еще большей мере, чем Cd, практически полностью. Выведение ее из организма  осуществляется всеми железами желудочно-кишечного тракта, почками, потовыми, молочными и слюнными железами, легкими. В организм человека Hg поступает в наибольшей мере с рыбопродуктами, в которых ее содержание может превышать ПДК= 0,5 мг/кг.         

 В заключение можно  привести тревожные статистические  данные: процент новорожденных с  теми или иными дефектами в  зонах с высоким содержанием  тяжелых металлов в почве, снеге,  воде приблизительно в три  раза выше, чем в малозагрязненных.           

Алюминий – наиболее распространенный металл: 8,8% массы земной коры составляет Al, входящий в состав различных минералов. Соответственно высоко содержание его в различных объектах окружающей среды. В живых организмах Al не выполняет какой-либо физиологической функции, но из-за его распространенности входит в состав живого вещества. Общее количество такого включенного в клеточные организмы Al составляет около 5 млрд. т. Больше всего Al в бактериях и наземных растениях. Острая токсичность Al невелика (ЛД50 = 370 мг/кг). Первые данные о токсичности алюминия были получены лишь в 70-е годах ХХ века. Поступающие в организм с водой и пищей ионы Al в форме нерастворимого фосфата выводятся с фекалиями, а частично всасываются в желудочно-кишечном тракте в кровь и выводятся почками. Если же деятельность почек нарушена, происходит накапливание Al, сопровождающееся ростом хрупкости костей, нарушением метаболизма Ca, Mg, P, F и развитием различных форм анемии. Обнаружены и более грозные проявления токсичности Al: нарушение речи, провалы памяти, нарушение ориентации, помутнение рассудка, конвульсии, а порой и гибель пациентов с почечной недостаточностью. Приведенные отклонения схожи с симптомами болезни Альцгеймера. Эта новая напасть проявляется в развитых странах и поражает пожилых людей.

          Так, сегодня число пораженных болезнью Альцгеймера в США превысило 3 млн. человек. Столь же неблагополучно положение и в Великобритании, Швеции. Статистических данных по России нет, т.к. бытующий термин «старческий маразм» маскирует болезнь Альцгеймера, а средняя продолжительность жизни мужчин в России меньше 60 лет. Проявление же болезни характерно в более пожилом возрасте.         

 Токсичность алюминия  явилась «выстрелом в спину»  для человечества. Будучи третьим  по распространенности элементом  земной коры и обладая ценными  качествами, металлический алюминий  нашел широчайшее применение  и в технике (уже в 60-е  гг. его использовали при производстве  около 4 тыс. изд.) и в быту. Однако  алюминиевая посуда (если она  не контактирует с кислой или  щелочной средой) не является  главным поставщиком Al в организм. Обогащение питьевой воды ионами Al начинается на водоочистной станции при обработке ее сульфатом алюминия. Многократное превышение концентрации Al  над нормой характерно для озерных и речных вод в регионах, подверженных действию кислотных дождей, за счет растворения природных малорастворимых алюмосиликатных пород. Это приводит к гибели рыб, земноводных и моллюсков в водоемах, орошаемых кислотными дождями. Не следует злоупотреблять содержащими гидроксид алюминия лекарствами: противоартритными, противогеморроидальными, понижающими кислотность желудочного сока. Как буферную добавку вводят гидроксид алюминия и в некоторые препараты аспирина и в губную помаду. Среди же пищевых материалов наивысшей концентрацией алюминия (до 20 мг/г) выделяется, увы, чай.          

Информация о работе УчениT о биосфере