Автор работы: Пользователь скрыл имя, 12 Февраля 2012 в 21:53, реферат
Загрязнение атмосферы — привнесение в атмосферный воздух новых нехарактерных для него физических, химических и биологических веществ или изменение их естественной концентрации.
Основные загрязнители атмосферного воздуха:
Оксид углерода
Оксиды азота
Диоксид серы
Загрязнение атмосферы — привнесение в атмосферный воздух новых нехарактерных для него физических, химических и биологических веществ или изменение их естественной концентрации.
Основные загрязнители атмосферного воздуха:
Окись
углерода
(СО) – бесцветный газ, не имеющий запаха,
известен также под названием «угарный
газ». Образуется в результате неполного
сгорания ископаемого топлива (угля, газа,
нефти) в условиях недостатка кислорода
и при низкой температуре. При этом 65% от
всех выбросов приходится на транспорт,
21% - на мелких потребителей и бытовой сектор,
а 14% - на промышленность[источник не
Двуокись углерода (СО2) – или углекислый газ, - бесцветный газ с кисловатым запахом и вкусом, продукт полного окисления углерода. Является одним из парниковых газов.
Двуокись серы (SO2) (диоксид серы, сернистый ангидрид) - бесцветный газ с резким запахом. Образуется в процессе сгорания серосодержащих ископаемых видов топлива, в основном угля, а также при переработке сернистых руд. Он, в первую очередь, участвует в формировании кислотных дождей. Общемировой выброс SO2 оценивается в 190 млн. тонн в год. Длительное воздействие диоксида серы на человека приводит вначале к потере вкусовых ощущений, стесненному дыханию, а затем – к воспалению или отеку лёгких, перебоям в сердечной деятельности, нарушению кровообращения и остановке дыхания.
Окислы азота (оксид и диоксид азота) – газообразные вещества: монооксид азота NO и диоксид азота NO2 объединяются одной общей формулой NOх . При всех процессах горения образуются окислы азота, причем большей частью в виде оксида. Чем выше температура сгорания, тем интенсивнее идет образование окислов азота. Другим источником окислов азота являются предприятия, производящие азотные удобрения, азотную кислоту и нитраты, анилиновые красители, нитросоединения. Количество окислов азота, поступающих в атмосферу, составляет 65 млн. тонн в год. От общего количества выбрасываемых в атмосферу оксидов азота на транспорт приходится 55%, на энергетику – 28%, на промышленные предприятия – 14%, на мелких потребителей и бытовой сектор – 3%.
Озон (О3) – газ с характерным запахом, более сильный окислитель, чем кислород. Его относят к наиболее токсичным из всех обычных загрязняющих воздух примесей. В нижнем атмосферном слое озон образуется в результате фотохимических процессов с участием диоксида азота и летучих органических соединений.
Углеводороды – химические соединения углерода и водорода. К ним относят тысячи различных загрязняющих атмосферу веществ, содержащихся в несгоревшем бензине, жидкостях, применяемых в химчистке, примышленных растворителях и т.д.
Свинец (Pb ) – серебристо-серый металл, токсичный в любой известной форме. Широко используется для производства красок, боеприпасов, типографского сплава и т.п. Около 60% мировой добычи свинца ежегодно расходуется для производства кислотных аккумуляторов. Однако основным источником (около 80%) загрязнения атмосферы соединениями свинца являются выхлопные газы транспортных средств, в которых используется этилированный бензин.
Промышленные пыли в зависимости от механизма их образования подразделяются на следующие 4 класса:
Основными
источниками антропогенных
Все возрастающее потребление человеком энергии не проходит бесследно ни для окружающей среды, ни для нас самих. При сжигании даже минимального количества ископаемых видов топлива в атмосферу выделяются газы и вещества, отрицательно воздействующие на экологию планеты. А неэффективное использование энергии ускоряет как истощение ресурсов, так и загрязнение окружающей среды. Поскольку современная цивилизация не может отказаться от выработки и потребления энергии, единственным выходом является ее рациональное использование, основанное на экономии энергоресурсов и внедрении энергоэффективных технологий.
Доказано, что использование ресурсо- и энергосберегающих технологий требует меньших затрат, чем строительство новых источников тепловой мощности. Например, на производство 1 т условного топлива требуется в 3-4 раза больше инвестиций, чем на его сбережение, так как месторождения газа, нефти и угля зачастую находятся в суровых, труднодоступных районах, отдаленных от потребителей тепла и электроэнергии.
Основным источником теплопотерь и вредных выбросов в нашей стране являются конечные потребители энергии – жилые, общественные и производственные здания. На их отопление расходуется более 40% всех топливно-энергетических ресурсов страны. Причем значительная доля энергопотребления приходится на жилищно-коммунальный сектор и превышает соответствующие показатели европейских стран более чем в два раза. Одной из основных причин такого положения дел является неэффективное использование энергии.
Эффективность
потребления тепла зданиями зависит
от многих факторов. В первую очередь,
к ним относятся объемно-
Решение проблемы энергосбережения в строительном секторе возможно только при использовании комплексного подхода, включающего снижение теплопотерь как за счет качественной тепловой защиты отапливаемых зданий, так и за счет снижения транспортных потерь на пути от производителя к потребителю энергии. Только разработок и усовершенствования строительной нормативной базы недостаточно, необходим также строгий энергоаудит (обследование зданий) на предмет выполнения этих норм.
В
соответствии с Законом Российской
Федерации “Об
Официальным документом, подтверждающим факт обследования, является энергетический паспорт. На федеральном уровне форма энергетического паспорта здания была утверждена в 2000 г. и опубликована в своде правил. Впервые паспорт здания включили в московские нормы МГСН 2.01-94. Энергообследование с оформлением энергетического паспорта может проводить либо организация, оказывающая услуги в области энергоаудита (с лицензией Госэнергонадзора, аккредитованная его региональным органом), либо специалисты этого регионального органа.
Обязательные обследования проводятся один раз в пять лет силами УГЭН на основе утвержденных 25 марта 1998 г. Минтопэнерго России “Правил проведения энергетических обследований организаций”. Энергоаудит может проводиться и на добровольной основе, с согласия и по заявкам предприятий и организаций.
Однако, как выяснилось, в настоящее время энергетические обследования зданий с приборным замером фактических теплопотерь и составлением энергетических паспортов проводятся редко. Это дает возможность строительным и проектным организациям переложить свои недоработки по соответствию нормативных теплопотерь зданий на плечи их собственников и фактически обойти нормативные требования.
По
мнению специалистов Технологического
института энергетических обследований,
диагностики и неразрушающего контроля
“ВЕМО”, объекты ЖКХ требуют
постоянного или выборочного
контроля, диагностики технического
состояния и определения
А
перед разработкой проекта
Тепловизионная съемка является одним из видов теплотехнического испытания здания. С помощью тепловизора (телекамеры, снимающей объект в инфракрасном спектре излучения) получают “тепловую” картинку, которая показывает распределение температуры на поверхности объекта. После компьютерной обработки данных оценивается общий температурный режим, определяются слабые места и выдаются рекомендации по устранению дефектов.
Особенно жалкое зрелище на “тепловых” картинках представляют собой панельные дома постройки 50-70 годов. По оценкам специалистов, именно эти здания вносят самый большой (разумеется, отрицательный) вклад в российскую статистику теплопотерь в жилом фонде. Так, опыт инструментальных энергетических обследований домов этого типа в Санкт-Петербурге показал повышенное (более чем в 2 раза) удельное потребление тепловой энергии. То есть налицо и отсутствие энергоэффективности, и, как следствие, прямое негативное воздействие на окружающую среду посредством неконтролируемых и все увеличивающихся выбросов СО2.
По результатам энергоаудита зданий северной столицы был определен суммарный потенциал энергосбережения. В случае комплексного подхода к решению проблемы теплоснабжения и теплопотерь он составит от 12,8 до 22 тысяч ГВтч в год, что в пересчете на природный газ 1358,7 – 2335,4 млн. м3 или в денежном выражении стоимости этого объема природного газа – от 20,5 до 35,3 млн. USD.
Проведение энергетических обследований становится, таким образом, одним из необходимых этапов решения проблемы энергосбережения. К сожалению, до сих пор не все домовладельцы оценили важность исследований и фиксации энергетических показателей в паспорте здания.
Поэтому, ввиду необязательности энергоаудита для большинства организаций, одной из задач Госэнергонадзора является создание благоприятных условия для увеличения числа энергообследований на добровольной основе. Ведь главная цель подготовки энергетического паспорта – поэтапная работа по созданию энергетического баланса жилищного фонда, контроль за потреблением энергетических ресурсов и определение мероприятий по экономии энергии, что, в конечном счете, выгодно в первую очередь самому домовладельцу.
Как отмечается экспертами института “ВЕМО”, следующим после обследования, но не менее важным и необходимым, фактором для увеличения энергоэффективности является улучшение теплоизоляционных характеристик зданий за счет качественных современных утеплителей, позволяющих повысить теплосопротивление ограждающих конструкций строящихся или реконструируемых домов.
В
качестве успешного примера можно
привести реализованный в рамках
Программы реконструкции