Комплексная реконструкция и эксплуатация зданий и сооружений

Автор работы: Пользователь скрыл имя, 11 Марта 2012 в 19:29, реферат

Описание

Строительство в нашей стране ведется в очень больших мас­штабах. Только жилых зданий в Советском Союзе возводится больше, чем во всех странах Западной Европы вместе взятых. Ежегодно у нас сдается в эксплуатацию 2,1 млн. квартир и более 10 млн. советских граждан улучшают свои жилищные условия, на карте нашей Родины появляются десятки новых го­родов. Именно поэтому строительство в нашей стране является третьей по масштабам после промышленности и сельского хо­зяйства отраслью народного хозяйства.

Содержание

1. ВВЕДЕНИЕ…………………………………………………………………………2
2. ДОЛГОВЕЧНОСТЬ И ИЗНОС ЗДАНИЙ…………………………………........5
Причины и механизм износа…………………………………………………….5
Физический износ и моральное старение……………………………………...8
Классификация повреждений зданий и её практическое использование...10
3. СПИСОК ЛИТЕРАТУРЫ…………

Работа состоит из  1 файл

Даша недвижимость.doc

— 320.00 Кб (Скачать документ)

 Разрушение строительных материалов носит весьма разно­образный характер: химический, электрохимический, физиче­ский, физико-химический. Детально это будет рассмотрено ниже применительно к основным строительным материалам: металлу, бетону, дереву. Классификация агрессивности сред и их воздействий приведена в СНиП 11.28—76. Агрессивные среды делятся на газовые, жидкие и твердые. Ниже дается их краткая характеристика.

      Газовые среды — это прежде всего такие соединения, как сероуглерод (CS2), углекислый газ (СО2), сернистый газ (SO2) и др. Их агрессивность определяют три главных фактора, или показателя: вид и концентрация газов, растворимость газов в воде, влажность и температура газов.

Жидкие среды — это растворы кислот, щелочей, солей, а также масла, нефть, растворители и др. Агрессивность таких сред определяется тремя показателями: концентрацией агрессивных агентов, их температурой, скоростью движения или величиной напора у поверхности конструкции. Коррозион­ные процессы более интенсивно протекают в жидкой агрессив­ной среде.

Твердые среды — это пыль, грунты и т. п. Их агрессивность оценивается четырьмя показателями: дисперсностью, растворимостью в воде, гигроскопичностью и влажностью окру­жающей среды. Влага в твердых средах играет особенно ак­тивную роль.

На рис. 1,6 показаны внешние и внутренние воздействия на здания и сооружения. Все они учитываются в нормах и при разработке проектов, однако страна наша так велика, столь разнообразны климатические, гидрогеологические условия строительства, а также и внутренние воздействия, вызванные происходящими в сооружениях процессами, что не всегда уда­ется найти оптимальные решения, учитывающие все воздейст­вия, относительно долговечности, экономичности и других по­казателей. Поэтому важной задачей персонала эксплуатацион­ной службы является учет специфических воздействий на сооружения, что способствует обеспечению заданной их долго­вечности. Рассмотрим основные факторы, воздействующие на сооружения.

Воздействие воздушной среды. В атмосфере содержатся пыль и газы, способствующие разрушению зданий. Загрязнен­ный воздух, особенно в сочетании с влагой, вызывает прежде­временный износ, коррозию или загрязнение, растрескивание и разрушение строительных конструкций. Вместе с тем в чистой и сухой атмосфере камни, бетоны и даже металлы могут со­храняться сотни и тысячи лет. Это значит, что воздушная среда, в которой находятся такие материалы, слабо агрессивна или совсем не агрессивна.

Основным загрязнителем воздуха являются продукты сгора­ния различных топлив; поэтому в городах и промышленных центрах металлы корродируют в два-четыре раза быстрее, чем в сельской местности, где сжигается значительно меньше угля и нефтепродуктов.

Загрязненность воздуха газами и твердыми частицами в зим­нее время шлите и зависит от вида топлива. Больше всего за­грязняет атмосферу пылевидное топливо, ибо при его сжигании вместе с дымом уносится много золы и пыли, меньше всего — природные газы.

Основными продуктами сгорания большинства видов топ­лива являются углекислый (СО2) и сернистый (SO2) газы. При растворении углекислого газа в воде образуется углекис­лота — конечный продукт сгорания многих видов топлива; она разрушающе действует на бетон и иные материалы. При рас­творении сернистого газа в воде образуется серная кислота, также разрушающая бетон.

Кроме углекислоты и серной кислоты, в дымах накаплива­ются и другие (свыше ста) вредные соединения: азотная и фосфорная кислоты, смолистые и иные вещества, несгоревшие частицы, которые, попадая на конструкции, загрязняют их и способствуют разрушению.

В приморских районах в атмосфере могут содержаться хло­риды, соли серной кислоты и другие вредные для строительных материалов вещества. Влажность воздуха повышает его агрес­сивное воздействие, в частности на металлы.

Воздействие грунтовой воды. Имеющаяся в природе грун­товая вода может быть: связанной (химически, гигроскопиче­ски и осмотически впитанной или пленочной); свободной; паро­образной (перемещающейся по порам из мест с большой упру­гостью водяного пара в места с меньшей его упругостью).

Грунтовая вода взаимодействует физически и химически с минеральными и органическими частицами грунта. Все ее виды находятся во взаимодействии друг с другом и переходят один в другой. Вода в грунтах всегда представляет собой рас­твор с изменяющимися концентрацией и химическим составом, что отражается и на степени ее агрессивности.

Оценивая агрессивность грунтовых вод, следует учитывать переменный ее характер: с течением времени возле подземных частей сооружений водный режим может изменяться, в связи с чем агрессивность среды будет повышаться или снижаться.

Атмосферные осадки, проникая в грунт, превращаются либо в парообразную, либо в гигроскопическую влагу, удерживаю­щуюся в виде молекул на частицах грунта молекулярными си­лами, либо в пленочную, поверх молекулярной, либо в грави­тационную, свободно перемещающуюся в грунте под действием сил тяжести. Гравитационная влага может доходить до грун­товой воды и, сливаясь с ней, повышать ее уровень.

Грунтовая вода, в свою очередь, вследствие капиллярного поднятия перемещается вверх на значительную высоту и об­водняет верхние слои грунта. В некоторых условиях капилляр­ная и грунтовая воды могут сливаться и устойчиво обводнять подземные части сооружений, в результате чего усиливается коррозия конструкций, снижается прочность оснований.

Изменение минералогического состава грунтовых вод меняет их агрессивность по отношению к подземным частям сооружений. В районах с большим количеством осадков (в северных) уровень грунтовых вод поднимается и снижается их карбонат­ная жесткость (в результате разбавления осадками); это уси­ливает способность вод к выщелачиванию извести в бетонных конструкциях. В засушливых районах, наоборот, из-за боль­шого испарения влаги повышается концентрация минеральных солей в воде, что вызывает кристаллизационное разрушение бетонных конструкций.

Испарение из грунтов влаги и их увлажнение приводят к движению в грунтах воздуха (кислорода), что также повы­шает их коррозионную активность.

Существует много разновидностей агрессивности грунтовых вод. Из них чаще всего выделяют общекислотную, выщелачи­вающую, сульфатную, магнезиальную и углекислотную в зави­симости от наличия в воде соответствующих примесей и их концентрации, указанных в СНиП 11.28—76.

Воздействие отрицательной температуры. Некоторые кон­струкции, например цокольные части, находятся в зоне пере­менного увлажнения и периодического замораживания. Отри­цательная температура (если она ниже расчетной или не приняты специальные меры для защиты конструкций от увлаж­нения), приводящая к замерзанию влаги в конструкциях и грунтах оснований, разрушающе действует на здания.

При замерзании воды в порах материала объем ее увели­чивается, что создает внутренние напряжения, которые все воз­растают вследствие сжатия массы самого материала под влия­нием охлаждения. Давление льда в замкнутых порах весьма велико — до 20 Па. Разрушение конструкций в результате за­мораживания происходит только при полном (критическом) влагосодержании, насыщении материала.

Вода начинает замерзать у поверхности конструкций, а по­этому разрушение их под воздействием отрицательной темпе­ратуры начинается с поверхности, особенно с углов и ребер. Максимальный объем льда получается при температуре —22°С, когда вся вода превращается в лед. Интенсивность за­мерзания влаги зависит от объема пор. Так, если вода в боль­ших порах начинает переходить в лед при

 0°С, то в капилля­рах она замерзает только при —17°С.

Самым устойчивым к замораживанию является материал с однородными и равномерными порами, наименее устойчи­вым— с крупными порами, соединенными тонкими капилля­рами, так как перераспределение в них влаги затруднено.

Напряжение в конструкциях зависит не только от темпера­туры охлаждения, но и от скорости замерзания и числа переходов через 0 °С; оно тем сильнее, чем быстрее происходит за­мораживание.

Камни и бетоны с пористостью до 15 % выдерживают 100—300   циклов   замораживания.   Уменьшение   пористости, а следовательно, и количества влаги повышает морозостойкость конструкций.

Из сказанного следует, что при замерзании разрушаются те конструкции, которые увлажняются. Защитить конструкции от разрушения при отрицательных температурах — это прежде всего защитить их от увлажнения.

Промерзание грунтов в основаниях опасно для зданий, по­строенных на глинистых и пылеватых грунтах, мелко- и средне-зернистых песках, в которых вода по капиллярам и порам поднимается над уровнем грунтовых вод и находится в связан­ном виде. Связанная вода замерзает не сразу и по мере за­мерзания перемещается из зон толстых оболочек в зоны с обо­лочками меньшей толщины; это объясняется подсасыванием воды из нижних слоев в зону замерзающего грунта.

Промерзание и выпучивание грунтов опасны только для на­земных сооружений, поскольку уже на глубине примерно 1,5 м от поверхности нет разницы в колебаниях дневной и ночной температур, а на глубине 10—30 м не ощущается изменение зимних и летних температур.

Вода в грунте основания независимо от того, является ли она поверхностной, грунтовой или капиллярной, всегда создает опасность промерзания грунта из-за повышения его теплопро­водности при увлажнении.

Повреждения зданий из-за промерзания и выпучивания ос­нований могут произойти после многих лет эксплуатации, если будут допущены срезка грунта вокруг них, увлажнение оснований и действие факторов, способствующих их промер­занию.

Воздействие технологических процессов. Каждое здание и сооружение проектируется и строится с учетом воздействия предусматриваемых в нем процессов; однако из-за неодинако­вой стойкости и долговечности материалов конструкций и раз­личного влияния на них среды износ их неравномерен. В пер­вую очередь разрушаются защитные покрытия стен и полы, окна, двери, кровля, затем стены, каркас и фундаменты. Сжа­тые элементы и элементы больших сечений, работающие при статических нагрузках, изнашиваются медленнее, чем изгибае­мые и растянутые тонкостенные, которые работают при дина­мической нагрузке, в условиях высокой влажности и высокой температуры.

Кислотостойкими являются породы с большим содержанием кремния (кварц, гранит, диабаз), нестойки к кислотам породы, содержащие известь (доломит, известняк, мрамор); последние являются щелочестойкими.

Обожженный кирпич стоек даже в среднекислой и средне-щелочной средах. Для него опасны плавиковая кислота и рас­твор едкого натра, он разрушается также при солевой кор­розии.

Сухой бетон морозостоек, однако пересыхание его при тем­пературе выше 60—80 °С приводит к обезвоживанию, прекра­щению гидратации, усадке, температурным деформациям. Предварительно-напряженный железобетон теряет свои проч­ностные качества уже при температуре выше 80 °С в резуль­тате снижения напряжения в арматуре.

Минеральные масла химически неактивны по отношению к бетонам, но в то же время отрицательно на них воздейст­вуют, так как их поверхностное натяжение в два-три раза меньше, чем у воды, а поэтому они обладают большей смачи­вающей способностью и большей силой капиллярного поднятия: масло, попавшее на бетон, глубоко проникает в него, раскли­нивая частицы, изолируя зерна цемента от влаги и прекращая тем самым их дальнейшую гидратацию. Относительное сниже­ние прочности бетона под действием пролитого масла тем зна­чительнее, чем выше водоцементное отношение (В/Ц): с уве­личением пористости бетона возрастает его насыщенность рас­творами, в том числе и маслами.

Износ конструкций под действием истирания — абразивный износ полов, стен, углов колонн, ступеней лестниц и других конструкций—бывает весьма интенсивным и поэтому сильно влияющим на их долговечность. Он происходит под действием как природных сил (ветров, песчаных бурь), так и вследствие технологических и функциональных процессов, например из-за интенсивного перемещения больших людских потоков в зда­ниях общественного назначения.

   Состояние производственных сооружений с агрессивными средами во многом зависит от культуры самого производства, т. е. от того, как герметизированы технологические линии, предотвращены ли агрессивные выделения в помещения, усилена ли вентиляция, как быстро смываются промышленные стоки. Для поддержания таких сооружений в исправном со­стоянии важна также культура их технической эксплуата­ции: чем выше агрессивность среды в сооружении, тем чаще должны проводиться обследования и возможно быстрее восста­навливаться конструкции, начавшие разрушаться.

2.2 Физический износ и моральное старение

 Износ, или старение,— это потеря сооружениями ещё элементами первоначальных эксплуатационных качеств. Такой процесс неизбежен, и задача состоит в недопущении ускорен­ного, преждевременного износа, в своевременной замене, уси­лении конструкций и оборудования с малыми сроками службы. Различают физический износ и моральное старение.

 Физический износ — это потеря   конструктивными  элемен­тами первоначальных физико-технических свойств. Моральное старение бывает двух форм: снижение стоимости сооружения, обусловленное научно-техническим прогрессом и удешевлением строительства с те­чением времени, при строительстве новых зданий;

потеря сооружением технологического соответствия его на­значению, восстановление которого связано с дополнительными затратами.

Физический износ конструкций сооружения определяется по Методике определения физического износа гражданских зда­ний, изданной МЖКХ РСФСР в 1970 г. Сущность ее состоит в следующем:

износ конструкций (%) определяется по специально разра­ботанным таблицам внешних признаков износа; таких таблиц разработано 54: для разных типов фундаментов, стен, перекры­тий и других конструкций;

износ сооружения (%) определяется как сумма произведе­ний износа отдельных конструктивных элементов на, их удель­ную стоимость, деленная на 100. Для этого разработан Сбор­ник укрупненных показателей восстановительной стоимости жи­лых и общественных зданий (Госстрой СССР, 1970). В нем приведена доля стоимости конструктивных элементов в раз­личных типах зданий.j

Таким образом, физический износ Q определяется по фор­муле

Q = Eft*e / gi,                                   (1)

где gi — износ отдельного элемента сооружения, %; е;— доля стоимости этого элемента по отношению к стоимости всего здания, %.

При определении износа здания его делят обычно на де­вять элементов. В табл. 3.1 приведен пример определения фи­зического износа здания по девяти его конструктивным элемен­там. Износ здания в этом примере составит Q = 2175/100~ ~22 %. Максимальный износ эксплуатируемых сооружений не должен превышать 70—80 %.

В некоторых работах ошибочно утверждается, что физиче­ский износ, достигнув 35—40%, прекращается во времени — кривые на графиках приближаются к горизонтальной линии и долговечность зданий становится как бы бесконечной без ка­питальных ремонтов. На самом же деле это не так. Износ с течением времени возрастает, особенно резко после достиже­ния зданием примерно 0,8 расчетного срока службы. Так, за­траты на ремонт при износе 65 % в 30 раз больше, чем при из­носе 10%. В среднем возрасте зданий их износ составляет около 0,35 % в год, а в конечном периоде — в три раза больше.

Информация о работе Комплексная реконструкция и эксплуатация зданий и сооружений