Основные современные тенденции совершенствования конструктивных решений зданий

Автор работы: Пользователь скрыл имя, 11 Февраля 2012 в 10:57, реферат

Описание

Оценивая новые повышенные требования в отношении упрощения и ускорения приспособления зданий к различным быстро меняющимся условиям эксплуатации, мы убеждаемся в необходимости применения принципиально новых типов зданий, отвечающих требованиям технического прогресса, экономики и организации производственной среды.

Содержание

1. Введение
2. Краткая история развития совершенствования строительных технологий
3. Общие сведения о типовых ограждающих конструкциях и путях их совершенствования
4. Эффективные системы зданий и пути их совершенствования
5. Совершенствование конструкций стен подземной части зданий
6. Городская архитектура
7. Пути реализации национальной программы «Доступное жилье»: наукоемкие конструктивные решения зданий
8. Строительство с помощью наукоёмких технологий
9. Роль современных технологий в строительстве из дерева
10. Строительство коттеджей и коттеджных поселков
11. Cписок литературы

Работа состоит из  1 файл

Документ Microsoft Word (2).doc

— 155.00 Кб (Скачать документ)

Работа многослойной конструкции на температурные воздействия  существенно отличается от такой  же работы однослойной: если преобладающей  формой деформации однослойной конструкции  является изгиб, то для многослойной со слабым средним слоем - сдвиг по слою утеплителя. Жесткие связи при температурных воздействиях работают в условиях сдвига и возникающего при этом отрыва, соответственно они должны быть и законструированы. Протяженные ребра армируются плоскими каркасами с поперечными стержнями, препятствующими отслоению ребра от внутреннего и наружного слоев. Шпонки размещаются так, чтобы в направлении действия гравитационной нагрузки усилия от температурных деформаций не возникали (по одной горизонтальной линии посередине высоты панели), они армируются каркасом, воспринимающим поперечную силу и момент в рабочем (вертикальном) направлении. 

Жесткие связи  работают при знакопеременных многократно  повторяемых температурных перемещениях величиной порядка 1 мм. Ситуация усугубляется тем, что расчетная арматура анкеруется в достаточно тонких пластинах наружного и внутреннего слоев. В особо жестких условиях работают относительно слабые бетонные шпонки. Все это обусловило необходимость постановки эксперимента на специальных образцах натурных размеров (фрагмент панели с двумя шпонками) с одновременным приложением нагрузки от наружной пластины и немногократно повторных перемещений от воздействия температуры. В пределах заданных 50 циклов нагружения все процессы стабилизировались, каких-либо неблагоприятных изменений не отмечено, т. е. эксперимент подтвердил надежность принятых решений. Работа шпонок и протяженных ребер для всех разработанных конструкций проверялась также на натурных образцах одиночными загружениями. 

Средний слой во всех случаях запроектирован из пенополистирола марки ПСБ-С, как наиболее эффективного, надежного и доступного материала. Однако известные нам данные по его долговечности получены для температурно-влажностных режимов, отличающихся от реальных. Выполненные нами испытания, моделирующие условия эксплуатации утеплителя в стене, показали, что долговечность пенополистирола в стенах составляет не менее 25-30 лет. 

Утеплитель снаружи  и изнутри защищен бетонными  пластинами толщиной не менее 60 мм, со стороны оконных и дверных  проемов предусмотрен защитный слой бетона той же толщины. Это исключает возгорание пенополистирола при воздействии огня. При повышении температуры до 90-100 °С происходит его сухая возгонка, что в дальнейшем будет требовать ремонта локальных участков, но препятствует распространению огня. Вид и характеристики бетона защитного слоя со стороны проемов подбираются из технологических соображений и из условий обеспечения требуемого теплосопротивления.  

В многослойных стеновых конструкциях, представляющих собой комбинацию тонкослойных элементов, не в полной мере исследованы особенности анкеровки закладных деталей и монтажных петель, не отраженные в известных методиках расчета. Для всех конструкций работа этих элементов проверена экспериментально. 

Сами тонкослойные элементы достаточно деформативны. При транспортировании и любых перемещениях их упругие деформации приводят к появлению на границах слоев трещин расслаивания, которые лишают конструкцию соответствующего товарного вида. Поэтому, хотя такие деформации не являются опасными, в конструкциях приходится предусматривать специальные связи. Проверка запроектированных конструкций при транспортировании (в том числе из г. Екатеринбурга в г. Тюмень), показала удовлетворительные результаты.  

Стеновые панели или крупноразмерные блоки являются частью стенового ограждения. При проектировании этих элементов большое внимание уделялось узлам сопряжения сборных элементов друг с другом и с примыкающими конструкциями. Требуемые теплотехнические характеристики обеспечивались для стенового ограждения в целом, с учетом решения узлов. 

Работа конструкций  при эксплуатационных воздействиях во всех случаях проверялась экспериментально. В первую очередь исследовались  специфические вопросы, определяемые многослойным решением. Для стен из крупных блоков исследования проводились на фрагментах стен, позволяющих рассмотреть особенности совместной работы многослойных элементов. 

Кроме исследования работы конструкции стеновой панели и ее отдельных элементов при  проектировании конструкций учитывалась  необходимость жесткой увязки конструктивного решения с технологией изготовления конструкций при многочисленных ограничениях, накладываемых существующей бортоснасткой, оборудованием, привычными приемами работ. Для отдельных конструкций разработан технологический регламент. Технологическим вопросом, общим для всех конструкций, является укладка и фиксация утеплителя. Решение этого вопроса оказалось возможным или путем установки специальных фиксирующих элементов, или использованием бетонных смесей различной подвижности при разных способах уплотнения.

Теплотехнические  характеристики конструкций проверялись  расчетным и экспериментальным  методами. Для оценки теплотехнических параметров неоднородных конструкций  в институте разработана специальная  программа расчета на ЭВМ, основанная на построении температурного поля фрагмента. Однако существующие подходы, хотя они и используются повсеместно, дают для неоднородных конструкций, как показывают наши исследования, заниженные результаты. Поэтому все разработанные конструкции, помимо расчета, исследованы экспериментально на образцах натурных размеров. Исследовались не только отдельные конструкции, но и фрагменты ограждения с узлами сопряжения и примыкающими элементами. 

В настоящее  время институт продолжает работы в  направлении совершенствования ограждающих конструкций. Сейчас ведутся работы по проектированию стеновых панелей для серии жилых домов 141 СВ. Стеновые панели толщиной 280 мм предусмотрены трехслойными с гибкими стеклопластиковыми связями, при этом используются результаты наших исследований таких связей. Уже выполненные испытания натурных конструкций подтвердили работоспособность этих конструкций. Другим направлением работ в данном направлении являются исследования свойств конструкционного полистиролбетона как эффективного заменителя тяжелого бетона или керамзитобетона в сборных элементах стенового ограждения. 

Основные выводы: 

1) Трехслойные стеновые панели являются наиболее перспективными сборными конструкциями, которые удачно сочетают в себе высокую прочность, жесткость, трещиностойкость и необходимое теплосопротивление при незначительной толщине. 

2) Существующие в настоящее время способы расчета трехслойных стеновых панелей требуют совершенствования на основе изучения их напряженно-деформированного состояния, что позволит снизить их материалоемкость, повысить эффективность и надежность. 

3) Исследование работы трехслойных стеновых панелей, создание методов их расчета требует системного подхода, который возможен при постоянном финансировании - региональном или федеральном. 

4) Совершенствование трехслойных стеновых панелей требует применения при их изготовлении новых материалов, свойства которых также должны изучаться. 

5) В настоящее время существуют новые базовые решения трехслойных стеновых п

панелей, удовлетворяющих требованиям современных теплотехнических норм, разработанных в ОАО институт "УралНИИАС", которые успешно применяются в строительстве и могут послужить основой для создания более совершенных конструкций. 
 
 

3.  Эффективные  системы зданий и пути их  совершенствования 

Изначально при  постановке задачи на разработку новой  конструктивной системы жилых и  общественных зданий требовалось обеспечить гибкие планировочные решения и  уменьшить удельную массу зданий в 1,7–2,0 раза. Кроме того, при разработке следовало предусмотреть максимальное использование традиционной продукции стройиндустрии и стройматериалов. 

Чтобы решить поставленную задачу, необходимо было создать единый несущий каркас с плоскими перекрытиями, способный воспринять все приложенные к зданию расчетные нагрузки и воздействия и обеспечить его пространственную жесткость и устойчивость. Плоские перекрытия в таком каркасе позволяют размещать ограждающие конструкции (наружные стены и перегородки) в любом месте, определяемом объемно-планировочными решениями. Поскольку наружные стены в каркасных зданиях можно выполнять поэтажно опертыми или навесными, они освобождены от восприятия общих нагрузок на здание и могут быть выполнены из легких малопрочных, но энергоэффективных материалов и изделий. 

Тщательный анализ отечественного и зарубежного опыта, результатов экспериментально-теоретических исследований показал, что для разрабатываемой системы многоэтажных зданий наиболее предпочтительными являются каркасы из монолитного или сборно-монолитного железобетона. С их применением плоские перекрытия могут быть осуществлены без перерасхода основных конструкционных материалов при сетке колонн до 6,6х6,6 м для первого материала и до 7,2х7,2 м – для второго. Из-за отсутствия доступных опалубочных систем к разработке на первой стадии была принята конструкция сборно-монолитного каркаса. Для этого каркаса требовались минимум опалубки под монолитные ригели и относительно простые поддерживающие устройства. Сначала были применены навесные монтажные мостики с опалубкой поверху для опирания сборных плит и устройства несущих ригелей. 

Для обеспечения  высокого темпа и всепогодности  строительства были разработаны энергоэффективные композиции бетонных смесей и малоэнергоемкая технология бетонирования. 

Так же в процессе совершенствования строительных технологий, были разработаны современные фундаментные конструкции и технологии их возведения для различных грунтово-геологических условий (гибкие плиты, щелевые фундаменты и др.), которые положительно зарекомендовали себя в практическом строительстве. 

Первый же опыт применения каркасной системы показал, что поставленная задача решена. Удельная масса здания уменьшена по сравнению  с панельным в 2,0 раза, с кирпичным  – в 2,8–3,0 раза. Плоские потолочные поверхности обеспечивают свободные  планировочные решения, трансформируемые как при строительстве, так и при эксплуатации. 

Принятое конструктивное решение является действительно  универсальным и пригодным для  строительства как жилых, так  и общественных и производственных зданий без дополнительных затрат на переоснащение производственной организации. Было запроектировано и построено множество зданий и сооружений по всей России с использованием данной технологии. Здания оказались не только "легкими", но и "теплыми", поскольку эффективная тепловая защита их обеспечивается поэтажно опертыми стенами. Наружные стены, преимущественно поэтажно опертые, как и перегородки, чаще всего выполняют однослойными в виде кладки из ячеистобетонных блоков. Реже применяются двухслойные наружные стены с облицовкой из керамического кирпича. 

К настоящему времени  проектирование и строительство  зданий различной высоты (до 16–18 этажей) распространилось достаточно широко –  на востоке до Челябинской области  включительно, от Ростова-на-Дону, Белгорода, Орла на юге до Сыктывкара на севере. В Московской области решением научно-технического совета Минмособлстроя 11 декабря 2002 г. серия Б1.020.1-7 рекомендована "для массового высотного и индивидуального строительства".  

Несмотря на очевидную эффективность, продолжается совершенствование конструктивных решений и методов их расчета. Это позволяет расширять возможности конструктивной системы и повышать ее эффективность. Так, например, для трехсекционного 5–7–9-этажного жилого дома, запроектированного в 2000 г. В Сыктывкаре, по уточненной методике в 2002 г. был произведен перерасчет конструкций и переработаны рабочие чертежи перекрытий. В результате на армирование монолитных ригелей потребовалось не 87,6 т стали, как в первоначальном решении, а только 58,4 т (экономия стали на армирование перекрытий составила 25,6%). Аналогичное перепроектирование в 2002 г. было произведено и для строящегося 18-этажного односекционного жилого дома в Белгороде. Расход стали на армирование перекрытия в этом случае уменьшен на 22,7%. Ведется дальнейшее совершенствование методов расчетов конструкций каркасов с учетом распорности в плоскости дисков перекрытий, учета перераспределений усилий между элементами вследствие проявления трещинообразования и неупругих свойств бетона, что позволяет повысить экономичность конструктивных решений и обеспечить требуемую надежность. 

Чтобы еще более  расширить архитектурные возможности  каркасной системы, повысить энергоэффективность  на эксплуатации за счет ширококорпусности  зданий, в настоящее время разработан сборно-монолитный каркас с наибольшей сеткой колонн до 8,4х8,0 м (рис. 3). 

В этом каркасе  крайние многопустотные плиты в  каждой ячейке выполнены укороченными, а монолитная часть несущих ригелей  у колонн вследствие этого – уширенной. Это позволяет существенно нарастить  жесткость перекрытий с плитами толщиной 22 см при действии вертикальной нагрузки, а верхняя рабочая арматура несущих ригелей у колонн может быть сравнительно просто размещена в один слой. Высоту сечения несущих ригелей для сокращения расхода металла на их армирование можно увеличить на толщину стяжки, разместив в ней полку ригеля. 

Чтобы увеличить  несущую способность колонн, расширить  возможности каркаса по применению их в домах повышенной этажности, проведены исследования и разработана  новая конструкция сборных колонн и бессварного их стыка. 

Для этого на торцах колонн использованы стальные пластины, объединенные в стыке винтовыми  шпильками. В ряде случаев предусмотрено  применение либо монолитных, либо сборных  колонн поэтажной разрезки. Все усовершенствованные  решения использованы при проектировании 16-этажного каркасного здания Делового центра в Москве с наибольшей сеткой колонн 7,5х6,6 м. В текущем году завершается переработка технической документации, куда будут включены все изменения. 

Информация о работе Основные современные тенденции совершенствования конструктивных решений зданий