Структурные уровни организации материи

Автор работы: Пользователь скрыл имя, 16 Апреля 2012 в 17:28, реферат

Описание

Структурные уровни организации материи. Общие сведения.
Современное научное знание основано на структурности материи и системном подходе. Система — это определенная целостность, проявляющая себя как нечто единое по отношению к другим объектам или условиям. В понятие системы входит совокупность элементов и связей между ними. Под элементом системы понимается компонент системы, который далее, внутри данной системы, рассматривается как неделимый, под структурной организацией материи — ее иерархическое строение — любой объект от микрочастиц до организмов, планет и галактик является частью более сложного образования и сам может считаться таковым, т. е. состоящим из неких составных частей. Доступная для наблюдения часть мира простирается в пространстве от 10-17 до 1026 м, а во времени — до 2 • 1010 лет.

Содержание

1. Структурные уровни организации материи. Общие сведения.
2. Макромир: концепции классического естествознания.
3. Квантово механическая концепция описания микромира.
a. Атомистическая концепция строения материи.
b. Элементарные частицы и кварковая модель атома.
4. Мегамир: современные астрофизические и космологические концепции.
a. Современные космологические модели Вселенной.
b. Проблема происхождения и эволюции Вселенной.
c. Структура вселенной.

Работа состоит из  1 файл

Структурные уровни организации материи_.doc

— 83.00 Кб (Скачать документ)


 

 

 

 

 

 

 

 

 

 

 

 

 

РЕФЕРАТ

по дисциплине: Естествознание

на тему: Структурные уровни организации материи.

 

 

 

 

 

 

 

             


Содержание

 

1.       Структурные уровни организации материи. Общие сведения.

2.       Макромир: концепции  классического естествознания.

3.       Квантово механическая  концепция  описания микромира.

a.       Атомистическая концепция строения материи.

b.      Элементарные частицы и кварковая модель атома.

4.       Мегамир: современные  астрофизические  и  космологические  концепции.

a.       Современные космологические модели Вселенной.

b.      Проблема происхождения и эволюции Вселенной.

c.       Структура вселенной.


Структурные уровни организации материи. Общие сведения.

Современное научное знание основано на структурности материи и системном подходе. Система — это определенная целостность, проявляющая себя как нечто единое по отношению к другим объектам или условиям. В понятие системы входит совокупность элементов и связей между ними. Под элементом системы понимается компонент системы, который далее, внутри данной системы, рассматривается как неделимый, под структурной организацией материи — ее иерархическое строение — любой объект от микрочастиц до организмов, планет и галактик является частью более сложного образования и сам может считаться таковым, т. е. состоящим из неких составных частей. Доступная для наблюдения часть мира простирается в пространстве от 10-17 до 1026 м, а во времени — до 2 • 1010 лет.

 

Молекула — наименьшая частица вещества, сохраняющая его химические свойства. Молекулы состоят из атомов, соединенных химическими связями. Молекула инертных газов — это просто атомы, а у других газов она состоит из двух или более атомов. Молекулы, состоящие из многих повторяющихся групп атомов, называют макромолекулами. Но свойства веществ определяются не только составом молекул, но и их структурой. В молекуле выделили структурные блоки, каждый из которых обладает своей уникальной реакционной способностью. Теория химического строения молекул была создана А.М.Бутлеровым, а позже подтверждена кван-тово-механическими расчетами. Под молекулярной структурой понимается сочетание атомов, которые имеют закономерное расположение в пространстве и связаны между собой химической связью с помощью валентных электронов.

 

Атом — составная часть молекулы. Существование структуры атома было доказано открытием в 1897 г. Дж.Дж.Томсоном электрона, называемого атомом электричества. Заряд электрона Томсон определил уже в 1898 г., а через 5 лет предложил модель строения атома. В 1903 г. Э. Резерфорд нашел посредством опытов с отклонением а-лучей, что отношение заряда к массе по знаку и величине соответствует дважды ионизированным атомам гелия. Опыты показали, что в атомах существуют положительно заряженные частицы — ядра, в которых сосредоточена почти вся масса атома и которые имеют размеры 10-14 м, тогда как размеры самого атома порядка 10-10 м. Была предложена «планетарная» модель атома. Исследования многих ученых позволили сделать вывод, что место элемента в Периодической системе, его атомный номер определяются числом элементарных зарядов ядра атома. Периодичность же свойств элементов объяснила только квантовая механика.

 

Вслед за электроном были открыты элементарные частицы: протон, нейтрон и другие (сейчас их известно более трехсот) и соответствующие им античастицы. Для упорядочения их группируют по времени жизни, участию в разных типах фундаментальных взаимодействий и другим признакам.

Кварковая модель строения элементарных частиц существует с 1964 г. (Г.Цвейг, М.Гелл-Ман). Сначала кварки рассматривались как гипотетические структурные элементы с дробным электрическим зарядом, но они заняли в квантовой хромодинамике роль основных частиц. Открытие возможности превращений одних элементарных частиц в другие показывает, что они тоже имеют сложную внутреннюю структуру. Ее описывают с помощью так называемых «виртуальных» частиц, так как эту внутреннюю структуру невозможно описать через другие частицы.

 

Микромир — мир очень малых микрообъектов, размеры которых от 10-10 до 10-18 м, а время жизни может быть до 10-24 с. Испускание и поглощение света происходит порциями, квантами, получившими название фотонов. Это мир — от атомов до элементарных частиц. При этом для микромира свойственен корпускулярно-волновой дуализм, т.е. любой микрообъект обладает как волновыми, так и корпускулярными свойствами. Описание микромира опирается на принцип дополнительности Н. Бора и соотношения неопределенности Гейзенберга. Мир элементарных частиц, которые долго считали элементарными «кирпичиками», подчиняется законам квантовой механики, квантовой электродинамики, квантовой хромоди-намики. Квантовое поле носит дискретный характер.

 

Макромир — это мир объектов, соизмеримых с человеческим опытом. Размеры макрообъектов измеряются от долей миллиметра до сотен километров, а времена — от секунд до лет. Поведение же макроскопических тел, состоящих из микрочастиц, описывается классической механикой и электродинамикой. Материя может пребывать как в виде вещества, так и в виде поля, причем вещество дискретно, а поле — непрерывно. Скорости распространения поля равны скорости света, максимальной из возможных скоростей, а скорости движения частиц вещества всегда меньше скорости света.

 

Мегамир — мир объектов космического масштаба: планеты, звезды, галактики, Метагалактика. Кроме них во Вселенной присутствуют материя в виде излучения и диффузная материя. Последняя может занимать огромные пространства в виде гигантских облаков газа и пыли — газо-пылевых туманностей. В звездах сосредоточено 97 % вещества нашей Галактики — Млечный Путь. В других галактиках распределение материи примерно такое же. В Галактике почти все звезды являются двойными, а всего их более 120 млрд. Диаметр Галактики порядка 100 тыс. св. лет; наше Солнце — рядовая звезда типа «желтый карлик», находится на краю утолщенного диска, в 5 пк от края. Но имеются звездные системы, состоящие из 3 — 5 звезд, часто окруженные диффузной материей. Звездные скопления могут состоять из нескольких сотен отдельных звезд, а шаровые скопления — из сотен тысяч. Галактики (их до 10 млрд), наблюдаемые с Земли как туманные пятнышки, имеют разную форму: спиральную, неправильную, эллиптическую. Они образуют скопления из нескольких тысяч отдельных систем. Систему галактик называют Метагалактикой. Мегамир описывается законами классической механики с поправками, которые были внесены теорией относительности.


Макромир:  концепции  классического  естествознания.

 

В  истории  изучения  природы  можно  выделить  два  этапа:  донаучный  и  научный.

Донаучный,  или  натурфилософский,  охватывает  период  от  античности  до  становления  экспериментального  естествознания  в ХVI –XVII  вв.  В  этот  период  учения  о  природе  носили  чисто  натурфилософский  характер:  наблюдаемые  природные  явления  объяснялись  на  основе  умозрительных  философских  принципов.

Формирование  научных  взглядов  на  строение  материи  относится  к  XVI  вв.,  когда  Г. Галилеем  была  заложена  основа  первой  в  истории  науки  физической  картины  мира – механической.  Он  не  просто  обосновал  гелиоцентрическую  систему  Н. Коперника  и  открыл  закон  инерции,  а  разработал  методологию  нового  способа  описания  природы – научно – теоретического.   Суть  его  заключалась  в  том,  что выделялись  только  некоторые  физические  характеристики,  которые  становились  предметом  научного  исследования.

И.Ньютон,  опираясь  на  труды  Галилея,  разработал  строгую  научную  теорию  механики,  описывающую  и  движение  небесных  тел, 

и  движение   земных  объектов  одними  и  теми  же законами.  Природа  рассматривалась  как  сложная  механическая  система.

Итогом  ньютоновской  картины  мира  явился  образ  Вселенной  как  гигантского  и  полностью  детерминированного  механизма,  где  события  и  процессы  являют  собой  цепь  взаимозависимых  причин  и  следствий.  Отсюда  и  вера  в  то,  что  теоретически  можно  точно  реконструировать  любую  прошлую  ситуацию  во  Вселенной  или  предсказать  будущее  с  абсолютной  определённостью.  И.Р. Пригожин  назвал  эту  веру  в  безграничную  предсказуемость  “  основополагающим  мифом  классической  науки”.

Другой  областью  физики,  где  механические  модели  оказались  неадекватными,  была  область  электромагнитных  явлений.   Эксперименты  английского  естествоиспытателя  М.Фарадея  и теоретические  работы  английского  физика  Дж.  К. Максвелла  окончательно  разрушили  преставления  ньютоновской  физики  о  дискретном  веществе  как  единственном  виде  материи  и  положили  начало  электромагнитной  картине  мира.


Квантово – механическая  концепция  описания микромира.

 

Изучая  микрочастицы,  учёные  столкнулись  с  парадоксальной,  с  точки  зрения  классической  науки,  ситуацией:  одни  и  те  же  объекты  обнаруживали  как  волновые,  так  и  корпускулярные  свойства.

Первый  шаг  в  этом  направлении  был  сделан  немецким  физиком  М. Планком.  Как  известно,  в  конце  XIX в.  в  физике  возникла  трудность,  которая  получила  название  “  ультрафиолетовой  катастрофы”.  В  соответствии  с  расчётами  по  формуле  классической  электродинамики  интенсивность  теплового  излучения  абсолютно  чёрного  тела  должна  была  неограниченно  возрастать,  что  явно  противоречило  опыту.

Первым  физиком,  который  восторженно  принял  открытие  элементарного  кванта  действия  и  творчески  развил  его,  был  Альберт Эйнштейн.  В  1905 г.  он  перенёс  гениальную  идею  квантового  поглощения  и  отдачи  энергии  при   тепловом  излучении  на  излучение  вообще  и  таким  образом  обосновал   новое  учение  о  свете.

Представление  о  свете  как  о  дожде  быстро  движущихся  квантов  было  чрезвычайно  смелым,  почти  дерзким,  в  правильность  которого  вначале  поверили  немногие.  Прежде  всего, с  расширением  квантовой  гипотезы  до  квантовой  теории  света  был  не  согласен  сам  М. Планк,  относивший  свою  квантовую  формулу  только  к  рассматриваемым  им  законам  теплового  излучения  чёрного  тела.

В  1924  г.  произошло  одно  из  величайших  событий  в  истории  физики:  французский  физик  Луи  де  Бройль  выдвинул  идею  о  волновых  свойствах  материи.  В  своей  работе  “  Свет  и  материя ”  он  писал  о  необходимости  использовать  волновые  и  корпускулярные  представления  не  только  в соответствии  с  учением  А. Эйнштейна   в  теории света,  но  также  и  теории  материи.  Л.  Бройль  утверждал,  что  волновые  свойства,  наряду  с  корпускулярными,  присущи  всем  видам  материи:  электронам,  протонам,  атомам,  молекулам  и  даже  микроскопическим  телам.

Признание  корпускулярно – волнового  дуализма  в  современной  физике  стало  всеобщим.  Любой  материальный  объект  характеризуется  наличием  как  корпускулярных,  так  и  волновых  свойств.

Тот  факт,  что  один  и  тот  же  объект  проявляется  и  как  частица  и  как  волна,  разрушал  традиционные  представления. Форма частицы   подразумевает  сущность,  заключённую  в  малом  объёме  или  в  конечной  области  пространства,  тогда  как  волна  распространяется  по  его  огромным  областям.  В  квантовой  физике  эти  два  описания  реальности  являются  взаимоисключающими,  но  равно  необходимыми  для  того,  чтобы  полностью  описать  рассматриваемые  явления.

 

 

Атомистическая    концепция    строения    материи.

 

Атомистическая  гипотеза  строения  материи,  выдвинутая  в  античности  Демокритом,  была  возрождена  в   XVIII в.  химиком  Дж. Дальтоном,  который  принял  атомный  вес  водорода  за  единицу  и  сопоставил  с  ним  атомные  веса  других  газов.  Благодаря  трудам  Дж.  Дальтона  стали  изучаться  физико- химические  свойства  атома.  В  XIXв.  Д. И. Менделеев  построил  систему  химических  элементов,  основанную  на  их  атомном  весе.

История  исследования  строения  атома  началась  в  1895 г.  благодаря  открытию  Дж. Дж.  Томсоном   электрона – отрицательно  заряженной  частицы,  входящей  в  состав  всех  атомов.  Поскольку  электроны  имеют  отрицательный  заряд,  а  атом  в  целом  электрически  нейтрален,  то  было  сделано  предположение  о  наличии  помимо  электрона  положительно  заряженной  частицы.  Масса  электрона  составила  по  расчётам  1\1836  массы  положительно  заряженной  частицы.

Исходя  из  огромной,  по  сравнению  с  электроном,  массы  положительно  заряженной  частицы,  английский  физик   У.  Томсон  (лорд  Кельвин)   предложил  в  1902 г.  первую  модель  атома – положительный  заряд  распределён  в  достаточно  большой  области,  а  электроны  вкраплены  в  него,  как   “изюм  в  пудинг”.  Эта  идея  была  развита  Дж.  Томсоном.  Модель  атома  Дж.  Томсона,   над  которой  он  работал  почти  15  лет,  не  устояла  перед  опытной  проверкой.

Модель  атома,  предложенная   Э. Резерфордом  в  1911  г.  напоминала  солнечную  систему:  в  центре  находится  атомное  ядро,  а  вокруг  него   по  своим  орбитам  движутся  электроны.

Ядро  имеет  положительный  заряд,  а  электроны – отрицательный…  Вместо  сил  тяготения,  действующих  в  Солнечной  системе,  в  атоме  действуют  электрические  силы.  Электрический  заряд  ядра  атома,  численно   равный  порядковому  номеру  в  периодической  системе  Менделеева,  уравновешивается  суммой  зарядов  электронов – атом  электрически  нейтрален. 

В  1913 г.   великий  датский  физик  Н. Бор  применил  принцип  квантования  при  решении  вопроса  о  строении  атома  и  характеристике  атомных  спектров.  Модель  атома  Н. Бора   базировалась  на  планетарной  модели  Э. Резерфорда  и  на  разработанной  им  самим  квантовой  теории  строения  атома.  Н. Бор  выдвинул  гипотезу   строения  атома,  основанную  на  двух  постулатах,  совершенно  несовместимых  с  классической  физики.

 

 

Элементарные  частицы  и  кварковая  модель  атома.

 

Термин  “элементарная  частица”  первоначально  означал  простейшие,  далее  ни  на  что  не  разложимые  частицы,  лежащие  в  основе  любых  материальных  образований.  Позднее  физики  осознали  всю  условность  термина  “элементарный”  применительно  к  микрообъектам.  Сейчас  уже  не  подлежит  сомнению,  что  частицы  имеют  ту  или  иную  структуру,  но,  тем  не  менее,  исторически  сложившееся  название  продолжает  существовать.

Электрический  заряд  является  другой  важнейшей  характеристикой  элементарных  частиц.  Все  известные  частицы  обладают  положительным,  отрицательным  либо  нулевым  зарядом.  Каждой  частице,  кроме  фотона  и  двух  мезонов,  соответствуют  античастицы  с  противоположным  зарядом.  В  1967 г.  американский  физик М. Телл – Манн  высказал  гипотезу  о  существовании  кварков – частиц  с  дробным  электрическим  зарядом.

Информация о работе Структурные уровни организации материи