Автор работы: Пользователь скрыл имя, 19 Ноября 2012 в 14:11, реферат
Понятие «элементарная частица» сформировалось в связи с установлением строения вещества на микроскопическом уровне. Обнаружение в начале 20-го века мельчайших носителей свойств вещества – атомов – позволило описать все известные вещества как комбинации конечного, хотя и достаточно большого, количества составляющих – атомов.
1.Введение
2.Краткая историческая справка
3.Элементарные частицы и их свойства
Классификация элементарных частиц
Свойства элементарных частиц
4.Взаимодействия элементарных частиц
Виды фундаментальных взаимодействий
Великое объединение
5.Практическое применение
Список использованной литературы
Кварки
К настоящему
времени установлено
Красота – это разность между числами b-кварков и антикварков b~. Красота сохраняется при сильных и электромагнитных взаимодействиях и может нарушаться при слабых.
Цвет внутри нуклона от кварка к кварку переносят частички-глюоны. Они похожи на фотоны. У глюонов нет массы, они движутся со скоростью света. Однако в отличие от зарядово-нейтральных фотонов, глюоны просто «измазаны» зарядом. Фотон никакого нового электрического поля вокруг себя не создаёт. Глюон же своим собственным зарядом рождает новые глюоны и происходит лавинообразное саморазмножение. Каждый кварк утоплен в толстом комке глюонной «резины». Очищенными от глюонов они становятся лишь в центре нуклона. Зондирование центральных областей нуклона дало неожиданные результаты – чистые кварки – лёгкие объекты, они в 100 раз легче нуклона. Оказывается, нуклоны состоят в основном из глюонов. Опыты показали, что в центре элементарной частицы кварки почти не связаны взаимодействиями, и ведут себя как плавающие в воздухе надувные шарики. Если же кварки пытаются разойтись, то сразу возникают связывающие их силы. Сквозь стенки протона легко проникают пучки зондирующих электронов, их пронизывают фотоны и нейтрино. И в то же время оттуда не может вырваться ни один кварк. Понять, почему это происходит, можно на очень простой модели. Представим себе, что между кварками натянуто что-то вроде резиновых нитей. Когда кварки рядом друг с другом, нити провисают, и ничто не мешает им двигаться. Но как только они расходятся, нити натягиваются и утягивают кварки обратно. Если в один из кварков «выстрелить» быстрым электроном, то он получит большой импульс и отскочит. Но его движение будет продолжаться лишь до тех пор, пока натяжение «резиновой нити» не возрастёт настолько, что их энергии хватит на рождение новой пары кварков. «Нить» рвётся, в точке разрыва выделяется энергия и рождается пара кварк-антикварк. Антикварк и выбитый электроном кварк «слипнутся» в мезон, а оставшийся кварк займёт место выбитого кварка. Теперь должно быть понятно, почему не удаётся выбить кварк из нуклона: сколько по нему ни бей, из него будут вылетать целые частицы – адроны, а не их осколки – кварки и антикварки.
Лептоны
Каждый лептон характеризуется лептонным зарядом, или лептонным числом. Следует различать мюонный, электронный и таонный заряды, обозначаемые соответственно через Lμ, Le, Lτ. Это различные величины, хотя им условно приписываются одинаковые числовые значения. Условились для всех отрицательно заряженных лептонов считать лептонные заряды равными +1. Лептонные заряды всех остальных частиц находятся из экспериментально установленного факта, согласно которому в замкнутой системе разность между числом лептонов и антилептонов остаётся постоянной. Для этого нужно придать этому факту форму закона сохранения лептонного заряда. При этом лептонные заряды всех остальных частиц принимаются равными нулю, так как у этих частиц свойства, связанные с существованием лептонного заряда, не обнаруживаются. Закон сохранения лептонного заряда требует, чтобы все положительно заряженные лептоны имели лептонный заряд, равный -1. Это видно из того, что возможны реакции:
e+ + e- —> 2γ,
μ+ + μ- —> 2 γ,
τ+ + τ-—> 2γ
Только
тогда суммарный лептонный
π+ —> μ+ + νμ
p —> n + e++ νe
следует, что лептонный заряд νe и νμ равен +1, а соответствующих им античастиц – -1. Аналогично надо приписать ντ лептонный заряд +1, а соответствующей ему античастице –-1. В настоящее время существует гипотеза о родстве кварков и лептонов. Эту гипотезу выдвинули А. Салам и Дж. Пати. По их мнению, кварки и лептоны очень похожи. Лептон является белым состоянием кварка. Электрические заряды лептонов 0 и 1, то есть 0/3 и 3/3, прекрасно укладываются в один ряд с зарядами кварков. Что же касается масс, то по их гипотезе, это результат влияния окружающего фона. Ведь вокруг всякой частицы образуется облако испущенных ею частиц, которые экранируют частицу и изменяют её свойства. Только такие заэкранированные, закутанные в облака частицы с изменёнными, или, как говорят физики, эффективными свойствами и наблюдаются на опытах. Внутри облака частица чувствует себя, как в ванне. А поскольку плотность и состав облака зависят от величины заряда и других характеристик частицы, вес членов кваркового мультиплета оказывается различным. Новая теория сократила список независимых элементарных частиц, сделала таблицу более стройной. Однако одного этого ещё недостаточно, чтобы физики поверили в гипотезу о тесной связи кварков с лептонами. Новая теория всего лишь заменила один непонятный факт – упрямство лептонов, другим – их родством с кварками. Это всё равно, что старую тайну объяснять с помощью новой загадки. Уильям Оккам, член Ордена нищенствующих монахов, выступавший с лекциями по богословию и логике, говорил:«Не следует с помощью большего делать то, чего можно достигнуть меньшей ценой» или более кратко:«Сущностей не следует умножать сверх необходимого». С тех пор этот принцип называют «бритвой Оккама». Она срезает все слабо обоснованные гипотезы, вылущивая зёрна истины. Это первый краеугольный камень научного исследования. Второй краеугольный камень – обязательная проверка экспериментом. Как ни стройна была бы теория, если она не проверена на опыте, то относится к разряду недоказанных гипотез. Аристотель, например, считал, что у женщин меньше зубов, чем у мужчин. Ему и в голову не приходило проверить это, хотя у него было две жены. Этот пример выглядит историческим анекдотом, но он полно передаёт пренебрежение науки того времени к эксперименту. Если же теория такова, что выводы её можно проверить лишь в далёком будущем, учёные подходят к ней с большой осторожностью. В теориях, основанных на родстве кварков и лептонов, глюоны, перенося цвет, могут сделать кварк лептоном, и такая частица – например, протон – сразу же распадётся на составные части, поскольку частиц, состоящих из смеси кварков и лептонов в природе не существует. Подобной радиоактивности ни в одной другой теории нет, поэтому распад протона будет убедительным доказательством того, что кварки и лептоны – близкие родственники. Расчёт говорит, что протон распадается крайне редко. В теле человека от рождения до смерти распадается в среднем 1 протон. Пройдёт немало лет, прежде чем потери атомов в мире станут заметными. Как же обнаружить такое сверхредкое событие? Прежде всего, заметим, что протон имеет положительный заряд. Значит, при распаде через какое-то время образуется позитрон. Двигаясь в веществе, он встретится с электроном, и они аннигилируют в кванты света. Эти искорки света – сигналы о «протонных катастрофах» в веществе. Засечь их очень трудно, и поэтому физикам приходится наблюдать за большим объёмом вещества сразу. Пока ни одного распада протона зарегистрировать не удалось, но физики со всего мира ждут вестей с «протонного фронта». Если же ни один протон так и не распадётся, это послужит сигналом тому, что физики в чём-то крупно ошибаются, и тогда придётся искать новую дорогу в недра микромира.
4. Взаимодействия элементарных частиц
1. Виды фундаментальных взаимодействий
В настоящее
время в природе известны четыре
вида фундаментальных
Об интенсивности перечисленных взаимодействий можно судить по скорости процессов, вызываемых ими. Обычно для сравнения берут скорости процессов при кинетических энергиях порядка 1 ГэВ; такие энергии характерны для физики элементарных частиц. При таких энергиях процессы, вызываемые сильным взаимодействием, проходят за время порядка 10-23 с, электромагнитным – 10-20 с, слабым – 10-9 с. Другой величиной характеризующей интенсивность взаимодействия, является длина свободного пробега частицы в веществе. Сильновзаимодействующие частицы с энергией 1 ГэВ можно задержать железной плитой с толщиной в несколько сантиметров. Нейтрино же с энергией 0,01 ГэВ, которым свойственно только слабое взаимодействие, для задержания потребовалось 109 км железа.
Сильные и слабые взаимодействия проявляются только на коротких расстояниях. Радиус действия сильных взаимодействий составляет 10-13 см, а слабых – 2 х 10-16 см. Электромагнитные силы, напротив, являются дальнодействующими. Они убывают пропорционально квадрату расстояния между частицами. По тому же закону убывают гравитационные силы. Поэтому отношение электромагнитных и гравитационных сил не зависит от расстояния между взаимодействующими частицами. Таким образом, в области, где проявляются слабые силы, гравитационное взаимодействие частиц на много порядков меньше даже слабого. Поэтому гравитационное взаимодействие в физике микромира не учитывается.
Классическая физика принимала, что взаимодействие между телами передаётся с конечной скоростью посредством силовых полей. Так, электрический заряд создаёт вокруг себя электрическое поле, которое в месте нахождения другого заряда действует на него с определённой силой. Так же, но уже посредством других силовых полей, осуществляются все взаимодействия в природе. Квантовая физика не изменила такие представления, но учла квантовые числа самого поля. Из-за корпускулярно-волнового дуализма всякому полю должна соответствовать определённая частица (квант поля), которая и является переносчиком взаимодействия. Одна из взаимодействующих частиц испускает квант поля, другая его поглощает. Электромагнитные взаимодействия переносятся фотонами, сильные – глюонами, слабые – промежуточными векторными W+ – и Z0 бозонами, гравитационное – гипотетическими гравитонами. В настоящее время электромагнитное и слабое взаимодействия рассматриваются как разные проявления электрослабого взаимодействия. Слабые силы на малых расстояниях (порядка радиуса их действия) одного порядка с электромагнитными. Для промежутков времени, необходимых для переноса взаимодействия, закон сохранения энергии нарушается. Иначе, для частиц, переносящих взаимодействия, нарушается обычная связь между энергией и импульсом. Поэтому эти частицы и названы виртуальными, как и процессы испускания-поглощения виртуальных частиц. Сильное взаимодействие обеспечивает и самую сильную связь элементарных частиц. В частности, связь нуклонов в атомном ядре обусловлена сильным взаимодействием. Этим объясняется исключительная прочность атомных ядер, лежащая в основе стабильности вещества в земных условиях.
Электромагнитное
взаимодействие сводится взаимодействию
электрических зарядов и
Гравитационное взаимодействие доминирует в случае больших масс объектов. Но в мире элементарных частиц на расстояниях порядка размера атомного ядра это взаимодействие ничтожно. Оно, возможно, становится существенным лишь на расстояниях порядка 10-33 см.
2. Великое объединение
Одной из основных целей современной теоретической физики является единое описание окружающего нас мира. Например, специальная теория относительности объединила электричество и магнетизм в единую электромагнитную силу. Квантовая теория, предложенная в работах Глеэшоу, Вайнберга и Салама, показала, что электромагнитное и слабое взаимодействия могут быть объединены в электрослабое. Так что есть основания полагать, что все фундаментальные взаимодействия в конечном итоге объединятся. Если мы начнём сравнивать сильное и электрослабое взаимодействия, то нам придётся уходить в области всё больших энергий, пока они не сравняются по силе и не сольются в одно в районе энергий в 1016 ГэВ. Гравитация же присоединится к ним согласно Стандартной Модели в районе энергий в 1019 ГэВ. К сожалению, такие энергии сталкивающихся на ускорителях частиц не только недоступны, но и но и вряд ли будут доступны в будущем. Однако теоретические исследования по поиску единой теории всех фундаментальных взаимодействий идут полным ходом.
Объединение двух фундаментальных теорий современной физики – квантовой теории и общей теории относительности – в рамках единого теоретического подхода до недавнего времени было одной из важнейших проблем. Примечательно, что эти две теории взятые вместе, воплощают почти всю сумму человеческих знаний о наиболее фундаментальных взаимодействиях в природе. Поразительный успех этих двух теорий состоит в том, что вместе они могут объяснить поведение материи практически в любых условиях – от внутриядерной до космической области. Большой загадкой, однако, была несовместимость этих двух теорий. И было непонятно почему природа на своём глубоком фундаментальном уровне должна требовать двух разных подходов с двумя наборами математических методов, двух наборов постулатов и физических законов? В идеале хотелось бы иметь Единую теорию поля, объединяющую эти две фундаментальные теории. Однако попытки их соединения постоянно разбивались из-за появления бесконечностей (расходимостей) или нарушения некоторых важнейших физических принципов. Объединить эти теории удалось лишь в рамках теории струн и суперструн. История создания теории струн началась с чисто случайного открытия в квантовой теории, сделанного в 1968 году Дж. Венециано и М. Судзуки. Перелистывая старые труды по математике, они случайно натолкнулись на бета-функцию, описанную в XVIII веке Леонардом Эйлером. К своему удивлению, они обнаружили, что, используя эту функцию, можно замечательно описать рассеяние сталкивающихся на ускорителе частиц. В 1970 – 1971 годах Намбу и Гото поняли, что за матрицами рассеяния скрывается классическая (не квантовая) релятивистская струна, то есть некий микроскопический объект, отдалённо напоминающий тонкую, натянутую струну. Потом были сформулированы и построены методы квантования таких струн. Однако оказалось, что квантовую теорию струн корректно (без отрицательных и больших единицы квантовых вероятностей) можно построить лишь в 10 и 26 измерениях, и модель сразу перестала быть привлекательной. 10 лет эта идея влачила жалкое существование, потому что никто не мог поверить, что 10- или 26-мерная теория имеет какое-либо отношение к физике в 4-мерном пространстве. Когда в 1974 году Шерк и Шварц предположили, что эта модель является на самом деле теорией всех известных фундаментальных взаимодействий, никто не принял это всерьёз. Спустя 10 лет, в 1984 году, появилась знаменитая работа М. Грина и Д. Шварца. В этой работе было показано, что возникающие при квантово-механических расчётах бесконечности в точности сокращаться благодаря симметриям, присущем суперструнам. После этой работы теория суперструн стала основным кандидатом на единую теорию всех фундаментальных взаимодействий элементарных частиц, и её начали активно разрабатывать, пытаясь свести всё разнообразие частиц и полей микромира к неким чисто пространственно-геометрическим явлениям. В чём же заключается смысл этой «универсальной» теории?
Мы привыкли думать об элементарных частицах как о точечных объектах. Возможно, что первичным является не понятие частицы, а представление о некоей струне – протяжённом, неточечном объекте. В этом случае все наблюдаемые частицы – лишь колебания этих самых струн. Струны бесконечно тонки, но длина их конечна и составляет около 10-33 см. Это ничтожно мало даже по сравнению с размером нейтрино, так что для многих задач можно считать объекты точечными. Но для квантовой теории струнная природа элементарных частиц очень важна. Струны бывают открытыми и замкнутыми. Двигаясь в пространстве-времени, они покрывают (заметают) поверхности, называемые мировыми листами. Отметим, что поверхность мирового листа гладкая. Из этого следует одно важное свойство струнной теории – в ней нет ряда бесконечностей, присущих квантовой теории поля с точечными частицами. Струны имеют определённую устойчивую форму колебаний – моды, которые обеспечивают частице, соответствующей данной моде, такие характеристики, как масса, спин, заряд и другие квантовые числа. Это и есть окончательное объединение – все частицы могут быть описаны через один объект – струну. Таким образом, теория суперструн связывает все фундаментальные взаимодействия и элементарные частицы между собой способом, похожим на тот, которым скрипичная струна позволяет дать единое описание всех тонов – зажимая по-разному скрипичные струны, можно извлекать самые разные звуки. Простейшее струнное взаимодействие, описывающее процесс превращения двух замкнутых струн в одну, можно представлять в виде устоявшейся аналогии – обычных брюк, форму которых приобретают их мировые листы. В этом случае штанины символизируют сближающиеся струны, сливающиеся в одну в районе верхней части брюк. Соединим два простейших струнных взаимодействия между собой (склеим двое брюк в районе пояса) и получим процесс, в котором две замкнутые струны взаимодействуют через объединение в промежуточную замкнутую струну, которая потом опять распадается на две, но уже другие. В струнной теории, в частности, существует замкнутая струна, соответствующая гравитону. Одной из особенностей теории является то, что она естественно и неизбежно включает в себя гравитацию как одно из фундаментальных взаимодействий.
Суперструны существуют в 10-мерном пространстве-времени, в то время, как мы живём в 4-мерном. И если суперструны описывают нашу Вселенную, нам необходимо связать эти два пространства. Для этого обычно сворачивают 6 дополнительных измерений до 10-33 см. Из-за малости этого расстояния оно становится абсолютно незаметным для всех современных ускорителей элементарных частиц. В конечном итоге мы получим привычное 4-мерное пространство, каждой точке которого отвечает крохотное 6-мерное пространство, так называемое Калаби-Яу. У струн есть ещё одно замечательное свойство – они могут «наматываться» на компактное измерение. Это приводит к появлению так называемых оборотных мод в спектре масс. Лёгкость оборотных мод позволяет интерпретировать их как наблюдаемые нами элементарные частицы. Величайший парадокс теории суперструн заключается в том, что она сама по себе не едина. Можно выделить 5 различных согласованных суперструнных теорий, известных как: тип I, тип IIА, тип IIВ, SO(32) и Е8 х Е8.
Информация о работе Элементарные частицы и их взаимодействия