Автор работы: Пользователь скрыл имя, 13 Сентября 2013 в 23:40, творческая работа
Общие сведения о кодировании информации
Кодирование числовой информации
Кодирование текстовой информации
Кодирование графической информации
Кодирование звуковой информации
Кодирование видео информации
Алфавитные системы счисления.
Древнерусская алфавитная
система счисления
Позиционные системы счисления
В позиционных системах счисления величина, обозначаемая цифрой в записи числа, зависит от её положения в числе (позиции).
Количество используемых цифр называется основанием системы счисления.
Например, 11 – это одиннадцать, а не два: 1 + 1 = 2 (сравните с римской системой счисления). Здесь символ 1 имеет различное значение в зависимости от позиции в числе.
Первые позиционные системы счисления
Самой первой такой системой, когда счетным "прибором" служили пальцы рук, была пятеричная.
Некоторые племена на филиппинских островах используют ее и в наши дни, а в цивилизованных странах ее реликт, как считают специалисты, сохранился только в виде школьной пятибалльной шкалы оценок.
Двенадцатеричная система счисления
Следующей после пятеричной возникла двенадцатеричная система счисления. Возникла она в древнем Шумере. Некоторые учёные полагают, что такая система возникала у них из подсчёта фаланг на руке большим пальцем.
Широкое
распространение получила двенадцатеричная
система счисления в XIX веке. На ее
широкое использование в
Элементом двенадцатеричной системы в современности может служить счёт дюжинами. Первые три степени числа 12 имеют собственные названия: 1 дюжина = 12 штук; 1 гросс = 12 дюжин = 144 штуки; 1 масса = 12 гроссов = 144 дюжины = 1728 штук.
Английский фунт состоит из 12 шиллингов.
Шестидесятеричная система счисления
Следующая позиционная система счисления была придумана еще в Древнем Вавилоне, причем вавилонская нумерация была шестидесятеричная, т.е. в ней использовалось шестьдесят цифр!
В более позднее время использовалась арабами, а также древними и средневековыми астрономами. Шестидесятеричная система счисления, как считают исследователи, являет собой синтез уже вышеупомянутых пятеричной и двенадцатеричной систем.
Какие позиционные системы счисления используются сейчас?
В настоящее время наиболее распространены десятичная, двоичная, восьмеричная и шестнадцатеричная системы счисления.
Двоичная,
восьмеричная (в настоящее время
вытесняется шестнадцатеричной) и
шестнадцатеричная система
Современные компьютерные системы оперируют информацией представленной в цифровой форме.
Десятичная система счисления
Десятичная система счисления — позиционная система счисления по основанию 10.
Предполагается, что основание 10 связано с количеством пальцев рук у человека.
Наиболее распространённая система счисления в мире.
Для записи чисел используются символы 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, называемые арабскими цифрами.
Двоичная система счисления
Двоичная система счисления — позиционная система счисления с основанием 2.
Используются цифры 0 и 1.
Двоичная система используется в цифровых устройствах, поскольку является наиболее простой и удовлетворяет требованиям:
Алфавит десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления
Система счисления |
Основание |
Алфавит цифр |
Десятичная |
10 |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9 |
Двоичная |
2 |
0, 1 |
Восьмеричная |
8 |
0, 1, 2, 3, 4, 5, 6, 7 |
Шестнадцатеричная |
16 |
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F |
Соответствие десятичной, двоичной, восьмеричной и шестнадцатеричной систем счисления
p=10 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
p=2 |
0 |
1 |
10 |
11 |
100 |
101 |
110 |
111 |
1000 |
1001 |
1010 |
1011 |
1100 |
1101 |
1110 |
1111 |
10000 |
p=8 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
20 |
p=16 |
0 |
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
A |
B |
C |
D |
E |
F |
10 |
Количество используемых цифр называется основанием системы счисления.
При одновременной работе с несколькими системами счисле
12310 — это число 123 в десятичной системе счисления;
110112 — то же число, но в двоичной системе.
Двоичное число 1111011 можно расписать в виде: 110112 = 1*24 + 1*23 + 0*22 + 1*21 + 1*20.
Перевод чисел из одной системы счисления в другую
Перевод из десятичной системы счисления в систему счисления с основанием p осуществляется последовательным делением десятичного числа и его десятичных частных на p, а затем выписыванием последнего частного и остатков в обратном порядке.
Переведем десятичное число 9910 в двоичную систем счисления (основание системы счисления p=2). В итоге получили 10000112=9910
Числа в компьютере
Числа в компьютере хранятся и обрабатываются в двоичной системе счисления. Последовательность нулей и единиц называют двоичным кодом.
Специфической особенности представления чисел в памяти компьютера рассмотрим на других уроках по теме «системы счисления».
Кодирование текстовой информации
Кодирование текстовой информации
Международная кодировка ASCII
Кодировка КОИ8-Р
Кодировка CP1251
Двоичное
кодирование графической
Аналоговая и дискретная форма представления информации
Человек способен воспринимать и хранить информацию в форме образов (зрительных, звуковых, осязательных, вкусовых и обонятельных). Зрительные образы могут быть сохранены в виде изображений (рисунков, фотографий и так далее), а звуковые — зафиксированы на пластинках, магнитных лентах, лазерных дисках и так далее.
Информация, в
том числе графическая и
Аналоговая и дискретная форма представления информации
Приведем пример
аналогового и дискретного
Положение тела на наклонной плоскости и на лестнице задается значениями координат X и У.
При движении тела
по наклонной плоскости его
Дискретизация
Примером аналогового
представления графической
Преобразование графической и звуковой информации из аналоговой формы в дискретную производится путем дискретизации, то есть разбиения непрерывного графического изображения и непрерывного (аналогового) звукового сигнала на отдельные элементы. В процессе дискретизации производится кодирование, то есть присвоение каждому элементу конкретного значения в форме кода.
Дискретизация – это преобразование непрерывных изображений и звука в набор дискретных значений в форме кодов.
Виды компьютерных изображений
Создавать и хранить графические объекты в компьютере можно двумя способами – как растровое или как векторное изображение. Для каждого типа изображений используется свой способ кодирования.