Автор работы: Пользователь скрыл имя, 17 Марта 2012 в 13:37, курс лекций
Основы информатики и вычислительной техники Лекция 1
Лекция 1. Информация и информатика
1. Информатика
2. Информация
3. Данные
4. Файлы и файловая структура
• сортировка данных – упорядочение данных по заданному признаку с целью удобства использования; повышает доступность информации;
• архивация данных – организация хранения данных в удобной и легкодоступной форме; служит для снижения экономических затрат по хранению данных и повышает общую надежность информационного процесса в целом;
• защита данных – комплекс мер, направленных на предотвращение утраты, воспроизведения и модификации данных;
• транспортировка данных – прием и передача (доставка и поставка) данных между удаленными участниками информационного процесса; при этом источник данных в информатике принято называть сервером, а потребителя – клиентом;
• преобразование данных – перевод данных из одной формы в другую или из одной структуры в другую. Преобразование данных часто связано с изменением типа носителя, например книги можно хранить в обычной бумажной форме, но можно использовать для этого и электронную форму, и микрофотопленку. Необходимость в многократном преобразовании данных возникает также при их транспортировке, особенно если она осуществляется средствами, не предназначенными для транспортировки данного вида данных. В качестве примера можно упомянуть, что для транспортировки цифровых потоков данных по каналам телефонных сетей (которые изначально были ориентированы только на передачу аналоговых сигналов в узком диапазоне частот) необходимо преобразование цифровых данных в некое подобие звуковых сигналов, чем и занимаются специальные устройства – телефонные модемы.
Приведенный здесь список типовых операций с данными далеко не полон. Миллионы людей во всем мире занимаются созданием, обработкой, преобразованием и транспортировкой данных, и на каждом рабочем месте выполняются свои специфические операции, необходимые для управления социальными, экономическими, промышленными, научными и культурными процессами. Полный список возможных операций составить невозможно, да и не нужно. Сейчас нам важен другой вывод;
Работа с информацией может иметь огромную трудоемкость, и ее надо автоматизировать.
3.3. Кодирование данных двоичным кодом
Для автоматизации работы с данными, относящимися к различным типам, очень важно унифицировать их форму представления – для этого обычно используется прием кодирования, то есть выражение данных одного типа через данные другого типа. Естественные человеческие языки – это не что иное, как системы кодирования понятий для выражения мыслей посредством речи. К языкам близко примыкают азбуки (системы кодирования компонентов языка с помощью графических символов). История знает интересные, хотя и безуспешные попытки создания «универсальных» языков и азбук. По-видимому, безуспешность попыток их внедрения связана с тем, что национальные и социальные образования естественным образом понимают что изменение системы кодирования общественных данных непременно приводит к изменению общественных методов (то есть норм права и морали), а это может быть связано с социальными потрясениями.
Та же проблема универсального средства кодирования достаточно успешно реализуется в отдельных отраслях техники, науки и культуры. В качестве примеров можно привести систему записи математических выражений, телеграфную азбуку, морскую флажковую азбуку, систему Брайля для слепых и многое другое.
Своя система существует и в вычислительной технике – она называется двоичным кодированием и основана на представлении данных последовательностью всего двух знаков: 0 и 1. Эти знаки называются двоичными цифрами, по-английски – binary digit или сокращенно bit (бит).
Одним битом могут быть выражены два понятия: 0 или 1 (да или нет, черное или белое, истина или ложь и т. п.). Если количество битов увеличить до двух, то уже можно выразить четыре различных понятия:
00 01 10 11
Тремя битами можно закодировать восемь различных значений:
000 001 010 011 100 101 110 111
Увеличивая на единицу количество разрядов в системе двоичного кодирования, мы увеличиваем в два раза количество значений, которое может быть выражено в данной системе, то есть общая формула имеет вид:
N= 2m, где N – количество независимых кодируемых значений; т – разрядность двоичного кодирования, принятая в данной системе кодирования целых и действительных чисел
Целые числа кодируются двоичным кодом достаточно просто – достаточно взять целое число и делить его пополам до тех пор, пока в остатке не образуется ноль или единица. Совокупность остатков от каждого деления, записанная справа налево вместе с последним остатком, и образует двоичный аналог десятичного числа.
19:2 = 9+1
9:2 = -4+1
4:2 = 2+0
2:2=1
Таким образом, 1910= 10112.
Для кодирования целых чисел от 0 до 255 достаточно иметь 8 разрядов двоичного кода (8 бит). Шестнадцать бит позволяют закодировать целые числа от 0 до 65 535, а 24 бита – уже более 16,5 миллионов разных значений.
Для кодирования действительных чисел используют 80-разрядное кодирование. При этом число предварительно преобразуется в нормализованную форму:
3,1415926= 0,31415926 · 101
300 000= 0,3 · 106
123 456 789 = 0,123456789 · 1010
Первая часть числа называется мантиссой, а вторая – характеристикой. Большую часть из 80 бит отводят для хранения мантиссы (вместе со знаком) и некоторое фиксированное количество разрядов отводят для хранения характеристики (тоже со знаком).
3.4. Кодирование текстовых данных
Если каждому символу алфавита сопоставить определенное целое число (например порядковый номер), то с помощью двоичного кода можно кодировать и текстовую информацию. Восьми двоичных разрядов достаточно для кодирования 256 различных символов. Этого хватит, чтобы выразить различными комбинациями восьми битов все символы английского и русского языков, как строчные, так и прописные, а также знаки препинания, символы основных арифметических действий и некоторые общепринятые специальные символы, например символ «§».
Технически это выглядит очень просто, однако всегда существовали достаточно веские организационные сложности. В первые годы развития вычислительной техники они были связаны с отсутствием необходимых стандартов, а в настоящее врем вызваны, наоборот, изобилием одновременно действующих и противоречивых стандартов. Для того чтобы весь мир одинаково кодировал текстовые данные, нужны едины таблицы кодирования, а это пока невозможно из-за противоречий между символам национальных алфавитов, а также противоречий корпоративного характера.
Для английского языка, захватившего де-факто нишу международного средства общения противоречия уже сняты. Институт стандартизации США (ANSI – American National Standard Institute) ввел в действие систему кодирования ASCII (American Standard Code for Information Interchange – стандартный код информационного обмена США). В системе ASCII закреплены две таблицы кодирования – базовая и расширенная. Базовая таблица закрепляет значения кодов от 0 до 127, а расширенная относите к символам с номерами от 128 до 255.
Первые 32 кода базовой таблицы, начиная с нулевого, отданы производителям аппаратных средств (в первую очередь производителям компьютеров и печатающих устройств). В этой области размещаются так называемые управляющие коды, которым не соответствуют никакие символы языков, и, соответственно, эти коды не выводятся ни на экран, ни на устройства печати, но ими можно управлять тем, как производится вывод прочих данных.
Начиная с кода 32 по код 127 размещены коды символов английского алфавита, знаков препинания, цифр, арифметических действий и некоторых вспомогательных символов.
Аналогичные системы кодирования текстовых данных были разработаны и в друга странах. Так, например, в СССР в этой области действовала система кодирована КОИ-7 (код обмена информацией, семизначный). Однако поддержка производителей оборудования и программ вывела американский код ASCII на уровень международного стандарта, и национальным системам кодирования пришлось "отступить" во вторую, расширенную часть системы кодирования, определяющую значения коде со 128 по 255. Отсутствие единого стандарта в этой области привело к множественности одновременно действующих кодировок. Только в России, а стало быть, и у нас в стране, можно указать три действующих стандарта кодировки и еще два устаревших.
Так, например, кодировка символов русского языка, известная как кодировка Windows-1251, была введена «извне» – компанией Microsoft, но, учитывая широкое распространение операционных систем и других продуктов этой компании в России, она глубоко закрепилась и нашла широкое распространение. Эта кодировка используется на большинстве локальных компьютеров, работающих на платформе Windows.
Другая распространенная кодировка носит название КОИ-8 (код обмена информацией, восьмизначный) – ее происхождение относится ко временам действия Совета Экономической Взаимопомощи государств Восточной Европы. Сегодня кодировка КОИ-8 имеет широкое распространение в компьютерных сетях на территории России и в российском секторе Интернета.
Международный стандарт, в котором предусмотрена кодировка символов русского алфавита, носит название кодировки ISO (International Standard Organization – Международный институт стандартизации). На практике данная кодировка используется редко.
На компьютерах, работающих в операционных системах MS-DOS, могут действовать еще две кодировки (кодировка ГОСТ и кодировка ГОСТ-алътернативная). Первая из них считалась устаревшей даже в первые годы появления персональной вычислительной техники, но вторая используется и по сей день.
В связи с изобилием систем кодирования текстовых данных, возникает задача межсистемного преобразования данных – это одна из распространенных задач информатики.
3.5 Универсальная система кодирования текстовых данных
Если проанализировать организационные трудности, связанные с созданием единой системы кодирования текстовых данных, то можно прийти к выводу, что они вызваны ограниченным набором кодов (256). В то же время очевидно, что если, например, кодировать символы не восьмиразрядными двоичными числами, а числами с большим количеством разрядов, то и диапазон возможных значений кодов станет намного больше. Такая система, основанная на 16-разрядном кодировании символов, получила название универсальной – UNICODE. Шестнадцать разрядов позволяют обеспечить уникальные коды для 65 536 различных символов – этого поля достаточно для размещения в одной таблице символов большинства языков планеты.
Несмотря на тривиальную очевидность такого подхода, простой механический переход на данную систему долгое время сдерживался из-за недостаточных ресурсов средств вычислительной техники (в системе кодирования UNICODE все текстовые документы автоматически становятся вдвое длиннее). Во второй половине 90-х годов технические средства достигли необходимого уровня обеспеченности ресурсами, и сегодня мы наблюдаем постепенный перевод документов и программных средств на универсальную систему кодирования. Для индивидуальных пользователей это еще больше добавило забот по согласованию документов, выполненных в разных системах кодирования, с программными средствами, но это надо понимать как трудности переходного периода.
3.6. Кодирование графических данных
Если рассмотреть с помощью увеличительного стекла черно-белое графическое изображение, напечатанное в газете или книге, то можно увидеть, что оно состоит из мельчайших точек, образующих характерный узор, называемый растром.
Поскольку линейные координаты и индивидуальные свойства каждой точки (яркость) можно выразить с помощью целых чисел, то можно сказать, что растровое кодирование позволяет использовать двоичный код для представления графических данных. Общепринятым на сегодняшний день считается представление черно-белых иллюстраций в виде комбинации точек с 256 градациями серого цвета, и, таким образом, для кодирования яркости любой точки обычно достаточно восьмиразрядного двоичного числа.
Для кодирования цветных графических изображений применяется принцип декомпозиции произвольного цвета на основные составляющие. В качестве таких составляющих используют три основные цвета: красный (Red, R), зеленый (Green, G) и синий (Blue, В). На практике считается (хотя теоретически это не совсем так), что любой цвет, видимый человеческим глазом, можно получить путем механического смешения этих трех основных цветов. Такая система кодирования называется системой RGB по первым буквам названий основных цветов.
Если для кодирования яркости каждой из основных составляющих использовать по 256 значений (восемь двоичных разрядов), как это принято для полутоновых черно-белых изображений, то на кодирование цвета одной точки надо затратить 24 разряда. При этом система кодирования обеспечивает однозначное определение 16,5 млн различных цветов, что на самом деле близко к чувствительности человеческого глаза. Режим представления цветной графики с использованием 24 двоичных разрядов называется полноцветным (True Color).
Каждому из основных цветов можно поставить в соответствие дополнительный цвет, то есть цвет, дополняющий основной цвет до белого. Нетрудно заметить, что для любого из основных цветов дополнительным будет цвет, образованный суммой пары остальных основных цветов. Соответственно, дополнительными цветами являются: голубой (Cyan, С), пурпурный (Magenta, М) и желтый (Yellow, Y). Принцип декомпозиции произвольного цвета на составляющие компоненты можно применять не только для основных цветов, но и для дополнительных, то есть любой цвет можно представить в виде суммы голубой, пурпурной и желтой составляющей. Такой метод кодирования цвета принят в полиграфии, но в полиграфии используется еще и четвертая краска – черная (Black, К). Поэтому данная система кодирования обозначается четырьмя буквами CMYK (черный цвет обозначается буквой К, потому, что буква В уже занята синим цветом), и для представления цветной графики в этой системе надо иметь 32 двоичных разряда. Такой режим тоже называется полноцветным (True Cohr).
Если уменьшить количество двоичных разрядов, используемых для кодирования цвета каждой точки, то можно сократить объем данных, но при этом диапазон кодируемых цветов заметно сокращается. Кодированный цветной графики 16-разрядными двоичными числами называется режимом High Color.