Автор работы: Пользователь скрыл имя, 14 Февраля 2012 в 19:46, реферат
Операционная система в наибольшей степени определяет облик всей вычислительной системы в целом. Несмотря на это, пользователи, активно использующие вычислительную технику, зачастую испытывают затруднения при попытке дать определение операционной системе. Частично это связано с тем, что ОС выполняет две по существу мало связанные функции: обеспечение пользователю-программисту удобств посредством предоставления для него расширенной машины и повышение эффективности использования компьютера путем рационального управления его ресурсами.
ОС как расширенная машина
В соответствии с требованиями Оранжевой книги безопасной считается такая система, которая "посредством специальных механизмов защиты контролирует доступ к информации таким образом, что только имеющие соответствующие полномочия лица или процессы, выполняющиеся от их имени, могут получить доступ на чтение, запись, создание или удаление информации".
Иерархия уровней безопасности, приведенная в Оранжевой Книге, помечает низший уровень безопасности как D, а высший - как А.
Различные коммерческие
структуры (например, банки) особо выделяют
необходимость учетной службы, аналогичной
той, что предлагают государственные рекомендации
С2. Любая деятельность, связанная с безопасностью,
может быть отслежена и тем самым учтена.
Это как раз то, что требует С2 и то, что
обычно нужно банкам. Однако, коммерческие
пользователи, как правило, не хотят расплачиваться
производительностью за повышенный уровень
безопасности. А-уровень безопасности
занимает своими управляющими механизмами
до 90% процессорного времени. Более безопасные
системы не только снижают эффективность,
но и существенно ограничивают число доступных
прикладных пакетов, которые соответствующим
образом могут выполняться в подобной
системе. Например для ОС Solaris (версия UNIX)
есть несколько тысяч приложений, а для
ее аналога В-уровня - только сотня.
История и общая характеристика семейства операционных систем UNIX
UNIX имеет долгую
и интересную историю.
UNIX зародился в лаборатории Bell Labs фирмы AT&T более 20 лет назад. В то время Bell Labs занималась разработкой многопользовательской системы разделения времени MULTICS (Multiplexed Information and Computing Service) совместно с MIT и General Electric, но эта система потерпела неудачу, отчасти из-за слишком амбициозных целей, не соответствовавших уровню компьютеров того времени, а отчасти и из-за того, что она разрабатывалась на языке PL/1, а компилятор PL/1 задерживался и вообще плохо работал после своего запоздалого появления. Поэтому Bell Labs вообще отказалась от участия в проекте MULTICS, что дало возможность одному из ее исследователей, Кену Томпсону, заняться поисковой работой в направлении улучшения операционной среды Bell Labs. Томпсон, а также сотрудник Bell Labs Денис Ритчи и некоторые другие разрабатывали новую файловую систему, многие черты которой вели свое происхождение от MULTICS. Для проверки новой файловой системы Томпсон написал ядро ОС и некоторые программы для компьютера GE-645, который работал под управлением мультипрограммной системы разделения времени GECOS. У Кена Томпсона была написанная им еще во времена работы над MULTICS игра "Space Travel" - "Космическое путешествие". Он запускал ее на компьютере GE-645, но она работала на нем не очень хорошо из-за невысокой эффективности разделения времени. Кроме этого, машинное время GE-645 стоило слишком дорого. В результате Томпсон и Ритчи решили перенести игру на стоящую в углу без дела машину PDP-7 фирмы DEC, имеющую 4096 18-битных слов, телетайп и хороший графический дисплей. Но у PDP-7 было неважное программное обеспечение, и, закончив перенос игры, Томпсон решил реализовать на PDP-7 ту файловую систему, над который он работал на GE-645. Из этой работы и возникла первая версия UNIX, хотя она и не имела в то время никакого названия. Но она уже включала характерную для UNIX файловую систему, основанную на индексных дескрипторах inode, имела подсистему управления процессами и памятью, а также позволяла двум пользователям работать в режиме разделения времени. Система была написана на ассемблере. Имя UNIX (Uniplex Information and Computing Services) было дано ей еще одним сотрудником Bell Labs, Брайаном Керниганом, который первоначально назвал ее UNICS, подчеркивая ее отличие от многопользовательской MULTICS. Вскоре UNICS начали называть UNIX.
Первыми пользователями UNIX'а стали сотрудники отдела патентов Bell Labs, которые нашли ее удобной средой для создания текстов.
Большое влияние на судьбу UNIX оказала перепись ее на языке высокого уровня С, разработанного Денисом Ритчи специально для этих целей. Это произошло в 1973 году, UNIX насчитывал к этому времени уже 25 инсталляций, и в Bell Labs была создана специальная группа поддержки UNIX.
Широкое распространение UNIX получил с 1974 года, после описания этой системы Томпсоном и Ритчи в компьютерном журнале CACM. UNIX получил широкое распространение в университетах, так как для них он поставлялся бесплатно вместе с исходными кодами на С. Широкое распространение эффективных C-компиляторов сделало UNIX уникальной для того времени ОС из-за возможности переноса на различные компьютеры. Университеты внесли значительный вклад в улучшение UNIX и дальнейшую его популяризацию. Еще одним шагом на пути получения признания UNIX как стандартизованной среды стала разработка Денисом Ритчи библиотеки ввода-вывода stdio. Благодаря использованию этой библиотеки для компилятора С, программы для UNIX стали легко переносимыми.
Рис. 5.1. История развития UNIX
Широкое распространение UNIX породило проблему несовместимости его многочисленных версий. Очевидно, что для пользователя весьма неприятен тот факт, что пакет, купленный для одной версии UNIX, отказывается работать на другой версии UNIX. Периодически делались и делаются попытки стандартизации UNIX, но они пока имели ограниченный успех. Процесс сближения различных версий UNIX и их расхождения носит циклический характер. Перед лицом новой угрозы со стороны какой-либо другой операционной системы различные производители UNIX-версий сближают свои продукты, но затем конкурентная борьба вынуждает их делать оригинальные улучшения и версии снова расходятся. В этом процессе есть и положительная сторона - появление новых идей и средств, улучшающих как UNIX, так и многие другие операционные системы, перенявшие у него за долгие годы его существования много полезного.
На рисунке 5.1 показана упрощенная картина развития UNIX, которая учитывает преемственность различных версий и влияние на них принимаемых стандартов. Наибольшее распространение получили две весьма несовместимые линии версий UNIX: линия AT&T - UNIX System V, и линия университета Berkeley-BSD. Многие фирмы на основе этих версий разработали и поддерживают свои версии UNIX: SunOS и Solaris фирмы Sun Microsystems, UX фирмы Hewlett-Packard, XENIX фирмы Microsoft, AIX фирмы IBM, UnixWare фирмы Novell (проданный теперь компании SCO), и список этот можно еще долго продолжать.
Наибольшее влияние на унификацию версий UNIX оказали такие стандарты как SVID фирмы AT&T, POSIX, созданный под эгидой IEEE, и XPG4 консорциума X/Open. В этих стандартах сформулированы требования к интерфейсу между приложениями и ОС, что дает возможность приложениям успешно работать под управлением различных версий UNIX.
Независимо от версии, общими для UNIX чертами являются:
Далее мы подробно остановимся на основных концепциях версии UNIX System V Release 4, которая вобрала в себя лучшие черты линий UNIX System V и UNIX BSD.
Версия UNIX System V
Release 4 - это незаконченная коммерческая
версия операционной системы, т.к. в
ее кодах отсутствуют многие системные
утилиты, необходимые для успешной эксплуатации
ОС, например утилиты администрирования
или менеджер графического интерфейса.
Версия SVR4 является скорее стандартной
реализацией кода ядра, вобравшая в себя
наиболее популярные и эффективные решения
из различных версий ядра UNIX, такие как
виртуальная файловая система VFS, отображаемые
в память файлы и т.п. Код SVR4 (частично доработанный)
лег в основу многих современных коммерческих
версий UNIX, таких как HP-UX, Solaris, AIX и т.д.
Ядро
любой современной коммерческой версии
UNIX представляет собой набор очень большого
количества функций, с запутанными взаимосвязями
и очень расплывчатыми границами между
основными подсистемами. В результате
любая модификация организованной таким
образом системы дается тяжело и приводит
к появлению в новых версиях большого
количества ошибок. Кроме того, не во всех
инсталляциях нужны все компоненты ядра,
а при монолитном его построении удаление
ненужных функций затруднено. Недостатки,
присущие операционным системам с большим
монолитным ядром (а это в первую очередь
различные версии UNIX'а), породили интерес
к системам, построенным на основе микроядра.
Микроядерный
подход заключается в том, что
базовые функции ядра оформляются
в виде отдельной небольшой
Основной сложностью использования микроядерного подхода на практике является замедление скорости выполнения системных вызовов при передаче сообщений через микроядро по сравнению с классическим подходом.
Можно подробно рассмотреть принципы организации и функции микроядра Mach по двум причинам. Во-первых, микроядро по определению содержит базовые механизмы, имеющиеся внутри любой операционной системы, поэтому знакомство с этими механизмами в чистом виде полезно и для изучения любой конкретной ОС.
Во-вторых,
микроядра лицензируются и
Система Mach имела в качестве предшественницы систему RIG - Rochester Intelligent Gateway, начало разработки которой пришлось на 1975 год. RIG была написана для 16-битового мини-компьютера компании DataGeneral под названием Elipce. Целью этой разработки была демонстрация возможностей структурирования операционной системы и представления ее в виде набора процессов, которые могут взаимодействовать между собой путем передачи сообщений, в том числе и по сети. Затем эта операционная система была улучшена путем добавления средств защиты и средств прозрачной работы в сети и получила название Accent (в 1981 году, в университете Карнеги-Меллона). В 1984 году она уже использовалась на 150 компьютерах PERQ - ранних графических станциях, но проиграла соревнование с UNIX'ом. Это обстоятельство побудило создать третье поколение ОС, использующей механизм обмена сообщениями. Этот проект и был назван Mach. В связи с тем, что Mach проектировалась как система, совместимая с UNIX, планировалась поддержка большого количества приложений для UNIX. Кроме совместимости с UNIX, в Mach были введены и другие усовершенствования, включая нити, улучшенные механизмы межпроцессного взаимодействия, поддержка многопроцессорных систем, улучшенная виртуальная память и др. В это время агентство DARPA искало операционную систему для поддержки мультипроцессоров. Выбор был сделан в пользу университета Карнеги-Меллона, и работы над ОС Mach были продолжены. Было решено сделать эту систему совместимой с 4.2BSD путем комбинации Mach и 4.2BSD в виде единого ядра. Хотя этот подход привел к большому ядру, он гарантировал абсолютную совместимость. Первая версия Mach была реализована в 1986 году для VAX11/784, 4-х процессорной машины. Вскоре эта ОС была перенесена на IBM PC RT и Sun 3. К 1987 году Mach выполнялась также на мультипроцессорах Encore и Sequent. Хотя Mach и имела сетевые средства, ее скорее можно было отнести к ОС отдельной машины или мультипроцессора, а не к сетевой распределенной прозрачной системе. Вскоре была создана организация производителей компьютеров OSF (IBM, DEC, Hewlett Packard) для того, чтобы отобрать контроль над ОС UNIX у ее собственника AT&T. Они выбрали Mach 2.5 в качестве основы для их первой операционной системы OSF/1. Хотя Mach 2 и OSF/1 содержали большое количество кода Berkeley и AT&T, была надежда, что OSF, по крайней мере, сможет контролировать направление развития UNIX. В 1988 году ядро Mach 2.5 было большим и монолитным из-за того, что содержало большое количество кода Berkeley UNIX. А в 1989 году университет Карнеги-Меллона удалил весь код BSD UNIX из ядра и поместил его в пользовательское пространство. То, что осталось, было микроядром, состоящим из чистого кода Mach. Эта версия 3.0 и используется как основа последующих версий OSF.