Оперативная память

Автор работы: Пользователь скрыл имя, 09 Ноября 2011 в 21:21, курсовая работа

Описание

Оперативная память является одним из важнейших элементов компьютера. Именно из нее процессор берет программы и исходные данные для обработки, в нее он записывает полученные результаты. Название «оперативная» эта память получила потому, что она работает очень быстро, так что процессору практически не приходится ждать при чтении данных из памяти или записи в память.

Содержание

Введение ………………………………………………………………………………………………………… 3
Глава 1. Как работает память?
1.1 Элементная база логики …………………………………………………..................................... 5
1.2 Быстродействие и производительность памяти………………………………………………… 5
Глава 2. Чипы памяти
2.1 Память типа DRAM…………………………………………………………………………….. 7
2.2.1 FPM…………………………………………………………………………………………….. 9
2.2.2 EDO ………………………………………………….………………………………………… 10
2.2.3 BEDO……………………………………………….…………………………………………... 12
2.2.4 VRAM ………………………………………………………………………………………..... 13
2.2.5 SDRAM ………………………………………………………………………………………… 13
2.2.6 Enhanced SDRAM …………………………………………………………………………… 15
2.2.7 SGRAM ………………………………………………………………………………………… 15
2.2.8 DDR SDRAM …………………………………………………………………………………. 15
2.2.9 RDRAM ………………………………………………………………………………………... 17
2.2 Память типа SRAM ……………………………………………………………………………… 18
Глава 3. Разъёмы:
3.1 DIP …………………………………………………………………………………………………. 20
3.2 SIPP ………………………………………………………………………………………………... 21
3.3 SIMM, DIMM и RIMM…………………………………………………………………………..... 21
Глава 4. Сравнительная характеристика основных типов памяти 23
Глава 5. Что нас ждёт в будущем?
5.1 FeRAM……………………………………………………………………………………………... 25
5.2 Голографическая память………………………………………………………………………..... 29
5.3 Молекулярная память…………………………………………………………………………….. 31
5.4 Наноструктуры……………………………………………………………………………………. 33
Заключение………………………………………………………………………………………………………. 35
Список литературы…………………………………………………………………………

Работа состоит из  1 файл

Курсовая .doc

— 755.50 Кб (Скачать документ)

     

    Рис.  2.1.3.1 Диаграмма работы памяти BEDO

 

     Независимо  от порядка обращения к данным, BEDO всегда работает на максимально возможной скорости и для частоты 66 Мгц ее формула выглядит так: 5-1-1-1, что на ~40% быстрее EDO-DRAM!

     Все же, несмотря на свои скоростные показатели, BEDO оказалась не конкурентоспособной  и не получила практически никакого распространения. Просчет состоял в том, что BEDO, как и все ее предшественники, оставалась асинхронной памятью. Это накладывало жесткие ограничения на максимально достижимую тактовую частоту, ограниченную 60 - 66 (75) мегагерцами. Действительно, пусть время рабочего цикла составляет 15 нс. (1 такт в 66 MHz системе). Однако, поскольку "часы" контроллера памяти и самой микросхемы памяти не синхронизованы, нет никаких гарантий, что начало рабочего цикла микросхемы памяти совпадет с началом такового импульса контроллера, вследствие чего минимальное время ожидания составляет два такта. Вернее, если быть совсем точным, рабочий цикл микросхемы памяти никогда не совпадает с началом тактового импульса. Несколько наносекунд уходит на формирование контроллером управляющего сигнала RAS или CAS, за счет чего он уже не совпадет с началом тактирующего импульса. Еще несколько наносекунд требуется для стабилизации сигнала и "осмысления" его микросхемой, причем, сколько именно времени потребуется заранее определить невозможно, т.к. на результат влияет и температура, и длина проводников, и помехи на линии, и т.д.

 
 

      2.1.4  VRAM

VRAM (Video Random Access Memory) — ВидеоОЗУ. Память, специально адаптированная для использования в видеоадаптерах. Двухпортовая память — ПК может записывать данные (для изменения изображения) в то время, когда видеоадаптер непрерывно считывает содержимое VRAM для прорисовки его на экране. Обычно необходимость в памяти такого типа возникает при работе с высокими разрешениями (более 1024 х 768 пикселов) в "глубоком" цвете (более 65536 цветов) и высокой частотой кадровой развертки (более 85 Гц). "Оконное" ОЗУ (WRAM - Window RAM) также является двухпортовой, однако поддерживает более эффективную схему буферизации и другие усовершенствования, позволяющие повысить производительность на

25% по  сравнению с VRAM. Оба описанных типа ОЗУ производительнее и дороже EDO.

      2.1.5  SDRAM

       SDRAM (Synchronous Dynamic Random Access Memory) – это  синхронизированная динамическая  память с произвольным порядком  выборки. Одним словом, синхронная динамическая оперативная память. SDRAM состоит из физических ячеек, которые собраны в страницы. Размер страницы может быть от 512 байт до нескольких килобайт. Каждая страница разбита на два банка: в одном банке ячейки с нечетными адресами строк, а в другом – с четными. Каждая ячейка имеет свой адрес, состоящий из номера (адреса) строки и номера (адреса) столбца. Сначала передается номер строки, затем номер столбца. По сути дела, номер – это набор электрических сигналов, которые надо сгенерировать, передать и обработать. На все это необходимо затратить время. В страничном режиме, передав номер строки можно получить доступ к нескольким ячейкам с разными номерами столбцов, то есть, не надо для каждой из них передавать номер строки, достаточно только номера столбца. Экономия времени налицо. Двигаемся дальше, строки можно разделить на четные и нечетные. Получается два банка: один – с четными строками, а другой – с нечетными. В то время, когда происходит обращение к одному банку, в другом происходит выборка адреса или еще что. Опять же экономия времени. Такой режим иногда называют расслоением.

        Для того чтобы увеличить скорость доступа к памяти, разработали пакетный режим (burst) доступа. Принцип состоит  в том, что после установки строки и столбца ячейки, происходит обращение к следующим трем смежным адресам без дополнительных состояний ожидания. Схема пакетного режима будет выглядеть так: x-y-y-y, где х – время выполнения первой операции доступа состоящей из продолжительности цикла и времени ожидания, а y – это число циклов, необходимое для выполнения каждой последующей операции. Например, для SDRAM схема будет выглядеть так: 5-1-1-1.

      

      Рис.2.1.5.1 Временная диаграмма  SDRAM

      По  отдельной линии передается синхронизирующий сигнал, по шине управления передается команда, скажем на считывание. После  этого формируется адрес и  по шине адреса передается в память. Затем начинается передача информации по шине данных. В этот момент может быть сформирован и передан новый адрес. И так постоянно.

 

      

      Рис.2.1.5.2. Модуль SDRAM на 256Мбайт

      

      Рис.2.1.5.3  Стандартный модуль памяти SDRAM PC100

      Выпустив  чипсет 440BX с официальной поддержкой тактовой частоты системной шины до 100 МГц, Intel сделала оговорку, что модули памяти SDRAM неустойчиво работают на такой скорости. После заявления Intel представила новую спецификацию, описывающую все тонкости, SDRAM PC100.

      Данной  спецификации отвечают только 8-нс чипы, а 10-нс чипы, по мнению Intel, неспособны устойчиво работать на частоте 100 МГц.

      Введение  стандарта PC100 в некоторой степени  можно считать рекламной уловкой, но все известные производители  памяти и системных плат поддержали эту спецификацию, а с появлением следующего поколения памяти переходят на его производство.

      Спецификация PC100 является очень критичной, одно описание с дополнениями занимает больше 70 страниц.

      Для комфортной работы с приложениями, требующими высокого быстродействия, разработано следующее поколение синхронной динамической памяти - SDRAM PC133. Продвижением данного стандарта на рынок занимается уже не Intel, а их главный конкурент на рынке процессоров AMD. Intel же решила поддерживать память от Rambus, мотивируя это тем, что она лучше сочетается с шиной AGP 4x.

      133-МГц  чипы направлены на использование  с новым семейством микропроцессоров, работающих на частоте системной  шины 133 МГц, и полностью совместимы  со всеми PC100 продуктами. Такими производителями, как VIA Technologies, Inc., Acer Laboratories Inc. (ALi), OPTi Inc., Silicon Integrated Systems (SiS) и Standard Microsystems Corporation (SMC), разработаны чипсеты, поддерживающие спецификацию PC133.

      2.1.6  Enhanced SDRAM (ESDRAM)

     Enhanced SDRAM (ESDRAM - улучшенная SDRAM) - более быстрая версия SDRAM, сделанная в соответствии со стандартом JEDEC компанией Enhanced Memory Systems. С точки зрения времени доступа производительность ESDRAM в два раза выше по сравнению со стандартной SDRAM. В большинстве приложений ESDRAM, благодаря более быстрому времени доступа к массиву SDRAM и наличию кэша, обеспечивает даже большую производительность, чем DDR SDRAM.

     Более высокая скорость работы ESDRAM достигается  за счет дополнительных функций, которые  используются в архитектуре этой памяти. ESDRAM имеет строку кэш-регистров (SRAM), в которых хранятся данные, к которым уже было обращение. Доступ к данным в строке кэша осуществляется быстрее, чем к ячейкам SDRAM, со скоростью 12 ns, т.к. не требуется обращаться к данным в строке через адрес в колонке. При этом скорость работы ячеек ESDRAM составляет 22 ns в отличие от стандартной скорости работы ячеек SDRAM, имеющей значения 50 - 60 ns.

     При этом стоит заметить, что память ESDRAM полностью совместима со стандартной  памятью JEDEC SDRAM на уровне компонентов и модулей, по количеству контактов и функциональности. Однако чтобы использовать все преимущества этого типа памяти, необходимо использовать специальный контроллер (чипсет).

     Увеличение  производительности при использовании ESDRAM достигается за счет применения двухбанковой архитектуры, которая состоит из массива SDRAM и SRAM строчных регистров (кэш). Строчные регистры вместе с быстрым массивом SDRAM обеспечивают более быстрый доступ для чтения и записи данных по сравнению со стандартной SDRAM. ESDRAM может работать в режиме "упреждающего обращения" к массиву SDRAM, в результате следующий цикл записи или чтения может начаться в момент, когда выполнение текущего цикла не завершено. Возможность использовать такой режим напрямую зависит от центрального процессора, управляющего работой конвейера адресации.

 

     2.1.7  SGRAM

     Это аббревиатура для Синхронной графической  памяти со случайным доступом (Synchronous Graphic Random Access Memory), типа DRAM, всё в большей  степени используемом в видеоадаптерах и графических акселераторах. Как и SDRAM, SGRAM способна самосинхронизироваться с частотой шины процессора вплоть до частот около 100 МГц. Вдобавок к этому, SGRAM использует некоторые другие технологии, такие как шаблонная и блочная запись, для увеличения пропускной способности для интенсивно работающих с графикой приложений

      2.1.8  DDR SDRAM (SDRAM II)

      DDR SDRAM (Double Data Rate Synchronous Dynamic Random Access Memory) –  динамическая синхронизированная  память с произвольным порядком выборки и удвоенной передачей данных. Появился этот тип памяти где-то в 1998 году и был сразу взят на вооружение производителями видеокарт. Затем DDR широко распространилась и на материнские платы. На сегодняшний день, этот тип памяти, пожалуй, наиболее применяемый в персональных компьютерах. Ведь DDR сочетает в себе приемлемую скорость и при этом относительную дешевизну.

      

      Рис.2.1.8.1 Стандартный модуль DDR SDRAM

      Принцип работы DDR SDRAM очень схож с обычной SDRAM (отсюда и второе название DDR SDRAM – SDRAM 2). Память разбита на страницы, каждая страница разбита на банки. Работа памяти синхронизирована с тактовым генератором системной платы. Основное отличие заключается в том, что за один цикл происходит два обращения к данным: по фронту и срезу импульса тактового сигнала системной шины. Говоря простым языком, чтение/запись происходит два раза за один такт. Кроме того, частота работы повышается за счет применения интерфейсных логических схем с еще более пониженным уровнем питания. Если для SDRAM обычно используются схемотехнические решения на базе LVTTL (Low Volt Transistor-to-Transistor Logic) с напряжением питания 3,3 В, то в DDR SDRAM - на базе SSTL (Stub Series Terminated Logic) с напряжением 2,5 В (а в перспективе и SSTL-2 с напряжением 1,25 В).

      DDR SDRAM управляется инверсными тактовыми  сигналами. Управляющие и адресные  сигналы регистрируются по положительному  фронту тактового сигнала, точнее при переходе сигнала с низкого уровня напряжения на более высокий, а вот данные передаются по обоим фронтам сигнала. Такая схема работы требует более четкой синхронизации. Для этого введен дополнительный стробовый сигнал DQS. Говоря просто, этот сигнал необходим для согласования передачи данных при чтении из памяти и контроллером при записи в память. До кучи, следует отметить, что при передаче данных по фронту и срезу сигнала синхронизации критичным будет лишь время задержки распространения сигнала. Вот и пришлось использовать этот строб-сигнал.

      

      Рис.2.1.5.2 Временная диаграмма  DDR SDRAM

      При тактовой частоте системной шины 100 МГц скорость передачи данных будет равна 1600 Мбайт/сек, а при 133 МГц – 2100 Мбайт/сек. Отсюда следуют названия памяти DDR – РС1600 и РС2100. Максимальная же пропускная способность при результирующей частоте в 400 Мгц может достигать 3,2 Гбайт/сек.

      Следует упомянуть тот факт, что микросхемы SDRAM и DDR физически не совместимы: в первом случае микросхемы имеют 168 контактов, во втором – 184. Отсюда несколько разное расположение ключа. Кроме этого, не все чипсеты поддерживают тот или иной тип памяти.

      В ближайшее время на рынке должна появится DDR 2. В этом типе памяти данные будут передаваться не 2 раза, а 4, что позволит повысить максимальную пропускную способность до 6,4 Гбайт/сек, и это позволит продлить жизнь DDR в мире инфотехнологий.

      2.1.9  RDRAM (Rambus DRAM)

      Direct Rambus DRAM - это высокоскоростная динамическая память с произвольным доступом, разработанная Rambus, Inc. Она обеспечивает высокую пропускную способность по сравнению с большинством других DRAM. Direct Rambus DRAMs представляет интегрированную на системном уровне технологию.

      Технология Direct Rambus представляет собой третий этап развития памяти RDRAM. Впервые память RDRAM появилась в 1995 г., работала на частоте 150 МГц и обеспечивала пропускную способность 600 Мбайт/с. Она использовалась в станциях SGI Indigo2 IMPACTtm, в приставках Nintendo64, а также в качестве видеопамяти. Следующее поколение RDRAM появилось в 1997 г. под названием Concurrent RDRAM. Новые модули были полностью совместимы с первыми. Но за год до этого события в жизни компании произошло не менее значимое событие. В декабре 1996 г. Rambus, Inc. и Intel Corporation объявили о совместном развитии памяти RDRAM и продвижении ее на рынок персональных компьютеров. Вопреки распространенному мнению, ее архитектура довольно прозаична и не блещет новизной. Основных отличий от памяти предыдущих поколений всего три:

    а) увеличение тактовой частоты за счет сокращения разрядности шины, 
    б) одновременная передача номеров строки и столба ячейки, 
    в) увеличение количества банков для усиления параллелизма.

        Повышение тактовой частоты вызывает резкое усиление всевозможных помех и в первую очередь электромагнитной интерференции, интенсивность которой в общем случае пропорциональна квадрату частоты, а на частотах свыше 350 мегагерц вообще приближается к кубической. Это обстоятельство налагает чрезвычайно жесткие ограничения на топологию и качество изготовления печатных плат модулей микросхемы, что значительно усложняет технологию производства и себестоимость памяти. С другой стороны, уровень помех можно значительно понизить, если сократить количество проводников, т.е. уменьшить разрядность микросхемы. Именно по такому пути компания Rambus и пошла, компенсировав увеличение частоты до 400 MHz (с учетом технологии DDR эффективная частота составляет 800 MHz) уменьшением разрядности шины данных до 16 бит (плюс два бита на ECC).

Информация о работе Оперативная память