Перспективные беспроводные интерфейсы локальных сетей

Автор работы: Пользователь скрыл имя, 14 Сентября 2011 в 11:05, реферат

Описание

Цель работы – изучение перспективных беспроводных интерфейсов локальных сетей. Для достижения поставленной цели необходимо решить следующие задачи:
o Изучить базовые аспекты построения беспроводных локальных сетей
o Исследовать технологии, используемые для построения беспроводных локальных сетей.

Содержание

Введение 3
1 Базовые аспекты построения беспроводных локальных сетей 4
1.1 Общие понятия 4
1.2 Особенности структуры беспроводной сети 6
1.3 Интерфейсы беспроводной локальной сети 9
1.4 Точки доступа 12
2 Технологии беспроводных локальных сетей 13
2.1 Стандарт 802.11 13
2.2 Уровень MAC канального уровня стандарта 802.11 13
2.3 Физические уровни стандарта 802.11 19
2.4 Wi-Fi 23
2.5 HiperLAN/2 24
Заключение 27
Библиографический список 28

Работа состоит из  1 файл

Перспективные беспроводные интерфейсы локальных сетей.docx

— 266.73 Кб (Скачать документ)
      1. Изначальный 802.11

       Первоначальный  стандарт 802.11, ратифицированный в 1997г., включает физические уровни, на которых  выполняется расширение спектра  путем скачкообразного переключения частоты (Frequency Hopping Spread Spectrum, FHSS) и высокоскоростная передача с расширением спектра  методом прямой последовательности (high-rate direct sequence spread spectrum, HR-DSSS). Скорость передачи данных достигает 2 Мбит/с, связь осуществляется в диапазоне 2,4 ГГц' При использовании технологии FHSS широкополосные сигналы занимают весь диапазон 2,4 ГГц, отведенный для таких целей[7].

       Можно настроить точки доступа, работающие в режиме FHSS, на 15 различных схем переключения частоты, чтобы они  не создавали взаимных помех. Благодаря  этому до 15 точек доступа могут  эффективно работать в режиме FHSS водной и той же зоне.

       Поскольку текущая версия стандарта 802.11 с режимом FHSS обеспечивает максимальную скорость передачи данных лишь 2 Мбит/с, немногие компании предлагают решения на основе FHSS для беспроводных локальных сетей, предназначенных для развертывания  внутри помещений. Сейчас доступны более  быстродействующие сети на основе стандартов 802.11а, 802.11b и 802.11g. Кроме того, механизм FHSS не способен взаимодействовать с другими физическими уровнями стандарта 802.11. Однако сети на основе FHSS представляют собой хорошее решение для систем типа "точка-несколько точек", предназначенных для развертывания вне помещений. Это обусловлено тем, что технология FHSS более устойчива к воздействию радиопомех, уровень которых вне помещений может оказаться весьма высоким.

       Системы DSSS стандарта 802.11 также обеспечивают скорость передачи всего лишь 2 Мбит/с, но зато совместимы с новейшим физическим уровнем, 802.11b. Поэтому пользователь, в ноутбуке которого установлена радиоплата интерфейса сети стандарта 802.11 DSSS, может взаимодействовать с точками доступа стандарта 802.11b. Однако такая ситуация маловероятна, поскольку радиоплаты интерфейса сети стандарта 802.11 DSSS уже не продаются.

      1.  802.11а

       В конце 1999 г. IEEE выпустила стандарт 802.11 а, регламентирующий передачу данных в  диапазоне 5 ГГц с использованием технологии мультиплексирования с  разделением по ортогональным частотам (orthogonal frequency division multiplexing, OFDM), при этом обеспечивается скорость передачи данных до 54 Мбит/с. Однако продукты, реализующие эту технологию, не были доступны до 2000 г., в основном из-за трудностей, возникающих при разработке электронных схем, работающих в этом диапазоне[7].

       Устройства  стандарта 802.11а работают в диапазоне 5 ГГц, обеспечивая скорость передачи данных до 54 Мбит/с при радиусе  действия до 90 м, который зависит  от действительной скорости передачи данных. Точки доступа и радиоплаты интерфейса сети стандарта 802.11а появились  на рынке в конце 2001-го, поэтому  доля установленного оборудования, соответствующего этому стандарту, пока незначительна  по сравнению с количеством сетей  стандарта 802.11b. Рекомендуется тщательно изучить проблемы совместимости, которые могут возникнуть при развертывании сети стандарта 802.11 а.

       Важным  преимуществом стандарта 802.11а является то, что он предлагает повышенную пропускную способность благодаря использованию 12-ти отдельных, неперекрывающихся  каналов. Это хороший выбор при  необходимости поддержки многих, сконцентрированных в небольшой  зоне пользователей и высокопроизводительных приложений, таких как потоковое  видео. Помимо более высоких характеристик, чем у систем стандарта 802.11b, сети стандарта 802.11а имеют и более высокую пропускную способность, чем сети 802.11g.

       Другим  преимуществом стандарта 802.11а является то, что диапазон 5 ГГц используется еще недостаточно широко, что позволяет  пользователям достигать высокой  производительности. Большинство создающих  помехи устройств, таких как микроволновые  печи и беспроводные телефоны, работают в диапазоне 2,4 ГГц. Поскольку потенциал  радиопомех в диапазоне 5 ГГц ниже, развертывание беспроводной локальной  сети оказывается менее рискованным[7].

       Потенциальная проблема сетей стандарта 802.11 а – их ограниченный радиус действия, что обусловлено главным образом их работой в диапазоне более высоких частот (5 ГГц). При работе на скоростях до 54 Мбит/с радиус действия в большинстве случаев ограничен величиной 90 м. Для того чтобы обеспечить работу сети в пределах заданной зоны, приходится устанавливать больше точек доступа, чем при использовании устройств стандарта 802.11b.

       Однако, если сравнить работу сетей стандартов802.l1b и 802.11а, то окажется, что пользователь сети 802.11а имеет возможность передавать данные с более высокой скоростью на те же расстояния, что и пользователь сети стандарта 802.11b, прежде чем он потеряет возможность установления соединения. Но при этом пользователь сети стандарта 802.11b может продолжать работу при низкой скорости передачи данных – 1 или 2 Мбит/с –при больших расстояниях, чем характерные для сетей стандарта 802.11а.

       Несомненную сложность представляет то, что стандарты 802.11а и 802.11b/g несовместимы. Так, пользователь, компьютерное устройство которого оборудовано радиоплатой стандарта 802.11b, не может привязаться к точке доступа, соответствующей стандарту 802.11а, и наоборот. Производители решают эту проблему, предлагая многорежимные радиоплаты, поддерживающие оба стандарта – 802.11а и 802.11b.

       Модулятор стандарта 802.11а преобразует двоичный сигнал в аналоговую форму, используя различные методы модуляции в зависимости от того, какая скорость передачи данных была выбрана. Например, при работе со скоростью 6 Мбит/с подуровень среды передачи (physical layer medium dependent, PMD) использует двоичную относительную фазовую манипуляцию (differential binary phase shift keying, DBPSK), при которой осуществляются сдвиги фазы центральной частоты передачи, отображающие различные комбинации двоичных разрядов. При более высоких скоростях передачи (54 Мбит/с), используется квадратурная амплитудная модуляция (quadrature amplitude modulation, QAM). В этом случае биты данных представляются путем изменения центральной частоты передачи, а также изменения амплитуды сигналов в дополнение к сдвигам фазы.

      1.  802.11b

       Наряду  со стандартами 802.11a IEEE ратифицировал стандарт 802.11b, представляющий собой расширение изначального стандарта 802.11, основанного на расширении спектра методом прямой последовательности в диапазоне 2,4 ГГц. Скорость передачи при этом достигает 11 Мбит/с. Точки доступа и радиоплаты интерфейса сети стандарта 802.11b начали появляться на рынке с 1999 г., поэтому значительное количество установленных к настоящему времени сетей соответствуют стандарту 802.11b[7].

       Важным  преимуществом стандарта 802.11b является то, что соответствующие ему устройства обеспечивают относительно большой радиус действия. Можно рассчитывать, что в большинстве случаев применения внутри помещений дальность связи превысит 270 м. Повышенный радиус действия позволяет устанавливать существенно меньшее количество точек доступа при развертывании беспроводной локальной сети в том же здании, где могла бы быть установлена сеть стандарта 802.11а.

       Недостаток  стандарта 802.11b в том, что можно выбрать только три неперекрывающихся канала в диапазоне 2,4 ГГц.[7] Стандарт 802.11 определяет 14 каналов (в США разрешены к применению только каналы с 1-го по 11-й), на работу в которых могут быть сконфигурированы точки доступа, но каждый из каналов передачи занимает примерно треть от всего диапазона 2,4 ГГц. Многие компании используют только неперекрывающиеся каналы 1, 6 и 11, чтобы точки доступа не создавали взаимные помехи. Это ограничивает общую пропускную способность сетей стандарта 802.11b, поэтому они хорошо подходят лишь для выполнения приложений среднего уровня производительности, таких как электронная почта и просмотр Web-страниц.

       Другим  недостатком сетей стандарта 802.11b является их потенциальная подверженность помехам со стороны других радиоустройств[7]. Например, беспроводной телефон, работающий в диапазоне 2,4 ГГц, может создавать серьезные помехи для беспроводной локальной сети стандарта802.11b, из-за чего пользователи ощущают ухудшение ее характеристик. Микроволновые печи и другие устройства, работающие в диапазоне 2,4 ГГц, также могут создавать помехи.

       Устройства  стандарта 802.11b используют технологию DSSS для рассеяния сигнала фрейм данных по подканалам диапазона 2,4 ГГц, ширина каждого из которых составляет 22 МГц. [7] Это приводит к повышению помехоустойчивости связи по сравнению с тем, когда передача сигнала осуществляется в узкой полосе частот. Поэтому FCC позволяет не приобретать лицензию на использование устройств, работающих с расширением спектра.

       Модулятор стандарта802.11b преобразует расширенный двоичный сигнал в аналоговую форму, используя различные методы модуляции в зависимости от того, с какой скоростью осуществляется передача данных. Например, при работе со скоростью 1 Мбит/с на уровне PMD используется двоичная относительная фазовая манипуляция (differential binary phase shift keying, DBPSK).   Модулятор просто сдвигает фазу центральной частоты передачи, чтобы в потоке данных можно было отличить двоичную 1 от двоичного 0.

       Для передачи со скоростью 2 Мбит/с PMD использует относительную квадратурную фазовую манипуляцию (differential quadrature phase shift keying, DQPSK), которая аналогична DBPSK, за исключением того, что используются четыре возможных сдвига фазы для представления каждых двух битов данных[7]. Благодаря этому хитроумному процессу можно передавать поток данных со скоростью 2 Мбит/с при использовании той же полосы пропускания, которая необходима для передачи со скоростью 1 Мбит/с в случае применения других методов модуляции. Похожие методы используются и при передаче данных с более высокими скоростями — 5,5 и 11 Мбит/с.

      1.  802.11g

       IIEE ратифицировал стандарт 802.11g в 2003 г. Он совместим со стандартом 802.11b и регламентирует повышенную скорость передачи (54 Мбит/с в диапазоне 2,4 ГГц)[7].

       При этом используется мультиплексирование  с разделением по ортогональным  частотам (orthogonal frequency division multiplexing, OFDM).

       Сильной стороной стандарта 802.11g является то, что он обратно совместим со стандартом802.11b. Компании, уже развернувшие сети стандарта 802.11b, в общем случае могут модернизировать точки доступа, чтобы обеспечить их совместимость с устройствами стандарта802.11g, просто за счет модернизации программно-аппаратных средств. Это эффективный способ перевода сети компании на новый уровень. Но существующие клиентские устройства стандарта 802.11b при работе в сети стандарта 802.11g требуют введения механизмов защиты, которые ограничивают характеристики беспроводной локальной сети в целом. Это обусловлено тем, что устройства стандарта 802.11b из-за различия в используемых методах модуляции не могут определить, когда устройства стандарта 802.11g осуществляют передачу. Поэтому оба типа устройств должны объявлять о своем намерении использовать среду передачи, используя понятный для обоих тип модуляции.

       Недостатки  стандарта 802.11b, такие как подверженность потенциальным радиопомехам и наличие только трех неперекрывающихся каналов, присущи и сетям стандарта 802.11g, поскольку они работают в том же диапазоне 2,4 ГГц. Поэтому сети стандарта802.11g имеют ограниченную пропускную способность по сравнению с сетями стандарта 802.11а.[7]

    1. Wi-Fi

       Альянс  Wi-Fi (Wi-Fi Alliance), который начал свою работу под именем "Ассоциация контроля совместимости с беспроводным Ethernet" или просто "ассоциация WECA" (wireless ethernet compatibility alliance, WECA), является международной некоммерческой организацией, занимающейся маркетингом и проблемами взаимодействия компонентов беспроводных локальных сетей стандарта 802.11. Альянс Wi-Fi — это группа, раскручивающая бренд "Wi-Fi", под который подпадают все разновидности беспроводных сетей, соответствующие стандарту 802.11 (802.11а, 802.11b и 802.11g), а также все стандарты такого типа, которые появятся в будущем. Альянс Wi-Fi также продвигает технологию защищенного доступа к Wi-Fi (Wi-Fi Protected Access, WPA), связующее звено между многократно раскритикованным механизмом WEP и стандартом защиты 802.11[3].

       Альянс Wi-Fi преследует следующие цели:

    • обеспечивать по всему миру сертификацию, побуждающую производителей придерживаться стандартов 802.11 при разработке компонентов беспроводных локальных сетей;
    • способствовать сбыту сертифицированных Wi-Fi изделий для применения их в домашних условиях, небольших офисах и на предприятиях;
    • тестировать и сертифицировать изделия Wi-Fi с целью обеспечения взаимодействия сетей.

Информация о работе Перспективные беспроводные интерфейсы локальных сетей