Автор работы: Пользователь скрыл имя, 02 Апреля 2013 в 22:29, курсовая работа
Завершая работу над рефератом можно прийти к выводу, что электронно-вычислительные машины в развитии информатики играют особую роль. Собственно само существование информатики как научного направления невозможно представить без вычислительной техники. Появление вычислительных машин, их быстрое развитие и массовое внедрение в различные сферы человеческой деятельности вызвали к жизни научно-техническое направление, которое называется вычислительной техникой. ЭВМ появились, когда возникла острейшая необходимость в очень трудоемких и точных расчетах, особенно в таких областях науки и техники, как: атомная физика и теория динамик полета и управления летательными аппаратами, в исследовании аэродинамики больших скоростей.
ВВЕДЕНИЕ 3
ГЛАВА 1 6
НАПРАВЛЕНИЯ РАЗВИТИЯ ЭВМ 6
1.1. АНАЛОГОВЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ (АВМ) 6
1.2. ЭЛЕКТРОННЫЕ ВЫЧИСЛИТЕЛЬНЫЕ МАШИНЫ (ЭВМ) 6
ГЛАВА 2 8
ПОКОЛЕНИЕ КОМПЬЮТЕРОВ 8
2.1. ПОКОЛЕНИЕ ПЕРВОЕ. КОМПЬЮТЕРЫ НА ЭЛЕКТРОННЫХ ЛАМПАХ 8
2.2. ПОКОЛЕНИЕ ВТОРОЕ. ТРАНЗИСТОРНЫЕ КОМПЬЮТЕРЫ 9
2.3. ПОКОЛЕНИЕ ТРЕТЬЕ. ИНТЕГРАЛЬНЫЕ СХЕМЫ 11
2.3.1. ОСОБЕННОСТИ МАШИН ЕДИНОЙ СИСТЕМЫ ЭВМ 12
2.3.2. ОТЛИЧИЯ III ЭВМ ПОКОЛЕНИЯ ОТ ПРЕЖНИХ 14
2.4. ПОКОЛЕНИЕ ЧЕТВЕРТОЕ. БОЛЬШИЕ ИНТЕГРАЛЬНЫЕ СХЕМЫ 15
2.5. ПЯТОЕ ПОКОЛЕНИЕ ЭВМ 18
ГЛАВА 3 21
СОВРЕМЕННЫЕ ПЕРСОНАЛЬНЫЕ КОМПЬЮТЕРЫ 21
ЗАКЛЮЧЕНИЕ 23
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ 25
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ
ГОСУДАРСТВЕННЫЙ ИНСТИТУТ УПРАВЛЕНИЯ И СОЦИАЛЬНЫХ ТЕХНОЛОГИЙ
Кафедра управления финансами и недвижимостью
КУРСОВАЯ РАБОТА
На тему: Поколение ЭВМ
Студентка группы 1016,
специальности А.М. Блоцкая
«Менеджмент»
Научный руководитель Н.Н. Поснов
Минск 2011
Оглавление
Компьютер (computer — «вычислитель»), электронная вычислительная машина (ЭВМ) — вычислительная машина, предназначенная для передачи, хранения и обработки информации.
С увеличением объёма вычислений появился первый счётный переносной инструмент - “Счёты”.
В начале 17 века возникла необходимость в сложных вычислениях. Потребовались счётные устройства, способные выполнять большой объём вычислений с высокой точностью. В 1642 г. французский математик Паскаль сконструировал первую механическую счётную машину - “Паскалину”.
В 1830 г. английский учёный Бэбидж предложил идею первой программируемой вычислительной машины (“аналитическая машина”). Она должна была приводиться в действие силой пара, а программы кодировались на перфокарты. Реализовать эту идею не удалось, так как было невозможно сделать некоторые детали машины.
Первый реализовал идею перфокарт Холлерит. Он изобрёл машину для обработки результатов переписи населения. В своей машине он впервые применил электричество для расчётов.
В 1930 г. американский учёный Буш изобрел дифференциальный анализатор - первый в мире компьютер.
Большой толчок в развитии вычислительной техники дала вторая мировая война. Военным понадобился компьютер, которым стал “Марк-1” - первый в мире цифровой компьютер, изобретённый в 1944 г. профессором Айкнем. В нём использовалось сочетание электрических сигналов и механических приводов. Размеры: 15 X 2,5 м., 750000 деталей. Могла перемножить два 23-х разрядных числа за 4 секунды.
В 1946 г. группой инженеров по заказу военного ведомства США был создан первый электронный компьютер - “Эниак”. Быстродействие: 5000 операций сложения и 300 операций умножения в секунду. Размеры: 30 м. в длину, объём - 85 м3., вес - 30 тонн. Использовалось 18000 электрических ламп.
Первая машина с хранимой программой - ”Эдсак” - была создана в 1949 г., а в 1951 г. создали машину “Юнивак” - первый серийный компьютер с хранимой программой. В этой машине впервые была использована магнитная лента для записи и хранения информации.
Начиная с 1950 года,
каждые 7-10 лет кардинально обновлялись
конструктивно-технологические
ЭВМ проделали большой эволюционный путь в смысле элементной базы (от ламп к микропроцессорам) а также в смысле появления новых возможностей, расширения области применения и характера их использования.
Деление ЭВМ на поколения - весьма условная, нестрогая классификация вычислительных систем по степени развития аппаратных и программных средств, а также способов общения с ЭВМ.
К первому поколению ЭВМ относятся машины, созданные на рубеже 50-х годов: в схемах использовались электронные лампы. Команд было мало, управление - простым, а показатели объема оперативной памяти и быстродействия - низкими. Быстродействие порядка 10-20 тысяч операций в секунду. Для ввода и вывода использовались печатающие устройства, магнитные ленты, перфокарты и перфоленты.
Ко второму поколению ЭВМ относятся те машины, которые были сконструированы в 1955-65 гг. В них использовались как электронные лампы, так и транзисторы. Оперативная память была построена на магнитных сердечниках. В это время появились магнитные барабаны и первые магнитные диски. Появились так называемые языки высокого уровня, средства которых допускают описание всей последовательности вычислений в наглядном, легко воспринимаемом виде. Появился большой набор библиотечных программ для решения различных математических задач. Машинам второго поколения была свойственна программная несовместимость, которая затрудняла организацию крупных информационных систем, поэтому в середине 60х годов наметился переход к созданию ЭВМ, программно совместимых и построенных на микроэлектронной технологической базе.
Третье поколение
ЭВМ. Это машины, создаваемые после
60х годов, обладающих единой архитектурой,
т.е. программно совместимых. Появились
возможности мультипрограммиров
Четвертое поколение ЭВМ. Это нынешнее поколение ЭВМ, разработанных после 1970 г. Машины 4го поколения проектировались в расчёте на эффективное использование современных высокоуровневых языков и упрощение процесса программирования для конечного пользователя.
В аппаратурном
отношении для них характерно
использование больших
Машины 4-го поколения - многопроцессорные, многомашинные комплексы, работающие на внеш. память и общее поле внеш. устройств. Быстродействие достигает десятков миллионов операций в секунду, память - нескольких млн. слов.
Переход к пятому поколению ЭВМ уже начался. Он заключается в качественном переходе от обработки данных к обработке знаний и в повышении основных параметров ЭВМ. Основной упор будет сделан на "интеллектуальность".
На сегодняшний день реальный «интеллект», демонстрируемый самыми сложными нейронными сетями, находится ниже уровня дождевого червя, однако, как бы ни были ограничены возможности нейронных сетей сегодня, множество революционных открытий, могут быть не за горами.
В АВМ все математические величины представляются как непрерывные значения каких-либо физических величин. Главным образом, в качестве машинной переменной выступает напряжение электрической цепи. Их изменения происходят по тем же законам, что и изменения заданных функций. В этих машинах используется метод математического моделирования (создаётся модель исследуемого объекта). Результаты решения выводятся в виде зависимостей электрических напряжений в функции времени на экран осциллографа или фиксируются измерительными приборами. Основным назначением АВМ является решение линейных и дифференцированных уравнений.
Достоинства АВМ:
Недостатки АВМ:
В отличие от предыдущих машин в ЭВМ числа представляются в виде последовательности цифр. В современных ЭВМ числа представляются в виде кодов двоичных эквивалентов, то есть в виде комбинаций 1 и 0. В ЭВМ осуществляется принцип программного управления. ЭВМ можно разделить на цифровые, электрифицированные и счётно-аналитические (перфорационные) вычислительные машины.
ЭВМ разделяются на большие ЭВМ, мини-ЭВМ и микро-ЭВМ. Они отличаются своей архитектурой, техническими, эксплуатационными и габаритно-весовыми характеристиками, областями применения.
Достоинства ЭВМ:
Недостатки ЭВМ:
Появление ЭВМ или компьютеров — одна из существенных примет современной научно-технической революции. Широкое распространение компьютеров привело к тому, что все большее число людей стало знакомиться с основами вычислительной техники, а программирование постепенно превратилось в элемент культуры. Первые электронные компьютеры появились в первой половине XX века. Они могли делать значительно больше механических калькуляторов, которые лишь складывали, вычитали и умножали. Это были электронные машины, способные решать сложные задачи.
Кроме того, они имели две отличительные особенности, которыми предыдущие машины не обладали:
Основным элементом ЭВМ первого поколения была электронная лампа. Промышленный выпуск и эксплуатация таких ЭВМ начались в 50-х годах. К первому поколению относятся отечественные ЭВМ БЭСМ-1, БЭСМ-2, «Урал-1», «Урал-2», «Стрела», М-2, М-3, «Минск-1», М-20 и другие, ориентированные в основном на решение научно-технических задач.
Машины первого поколения были весьма громоздки, потребляли большое количество энергии и имели невысокую надежность. Их производительность не превышала 10—20 тыс. оп/с, а емкость основной памяти — 4 К машинных слов (где К = 210 = 1024). В ЭВМ первого поколения, по существу, не было системы программного обеспечения. Программирование было детализировано до уровня машинных команд и выполнялось пользователями на машинном языке данной ЭВМ. Пользователь также осуществлял ввод и отладку программ, обеспечивал управление вычислительным процессом при возникновении непредвиденных или недопустимых ситуаций.
Рисунок. 1 - Электронная вычислительная машина первого поколения БЭСМ-2
Несмотря на указанные недостатки, ЭВМ первого поколения продемонстрировали определенные возможности для автоматизации вычислительных работ, в частности в области космических исследований, ядерной физики и др., способствовали накоплению опыта по применению ЭВМ в других отраслях народного хозяйства.
В конце 50-х годов появились отечественные ЭВМ второго поколения. Их элементной базой стали полупроводниковые приборы — транзисторы, что позволило существенно повысить производительность и надежность ЭВМ при одновременном уменьшении ее габаритных размеров, массы и потребляемой мощности.
В ЭВМ второго поколения широко использовался печатный монтаж, при котором необходимые электрические соединения между элементами создавались вытравливанием фольги, нанесенной на изоляционный материал.
В СССР были созданы различные по назначению и возможностям полупроводниковые ЭВМ второго поколения, в том числе БЭСМ-4, «Урал-14», «Урал-16», Минск-22», «Минск-32», М-220, М-222, «Мир», «Раздан», «Наири» и многие другие. Производительность этих ЭВМ не превышала 50—100 тыс. оп/с, а емкость основной памяти — 32 К машинных слов. Среди машин второго поколения особо выделяется БЭСМ-6 с производительностью около 1 млн. оп/с и емкостью основной памяти до 128 К машинных слов.
В машинах второго поколения получило также развитие программное обеспечение, в частности зародилось так называемое системное программирование, позволившее установить определенное взаимодействие между разрозненными наборами различных программ в процессе их выполнения. Комплексы таких системных программ были первоначально названы операционными системами.
Для повышения производительности
труда программистов стали применяться различные
алгоритмические языки (Алгол, Фортран
и др.), а также библиотечные наборы стандартных
программ. В результате развития средств
программного обеспечения значительно
расширилась сфера применения вычислительной
техники, появились ЭВМ не только для научно-технических расчетов,
но и для решения планово-экономических
задач, управления различными производственно-