Автор работы: Пользователь скрыл имя, 21 Ноября 2010 в 10:55, доклад
Иску́сственный интелле́кт (ИИ, англ. Artificial intelligence, AI) — наука и технология создания интеллектуальных машин, особенно интеллектуальных компьютерных программ. ИИ связан со сходной задачей использования компьютеров для понимания человеческого интеллекта, но не обязательно ограничивается биологически правдоподобными методами.
Поясняя своё определение, Джон Маккарти указывает: «Проблема состоит в том, что пока мы не можем в целом определить, какие вычислительные процедуры мы хотим называть интеллектуальными. Мы понимаем некоторые механизмы интеллекта и не понимаем остальные. Поэтому под интеллектом в пределах этой науки понимается только вычислительная составляющая способности достигать целей в мире»
Другие определения искусственного интеллекта:
Научное направление, в рамках которого ставятся и решаются задачи аппаратного или программного моделирования тех видов человеческой деятельности, которые традиционно считаются интеллектуальными.
Свойство интеллектуальных систем выполнять функции (творческие), которые традиционно считаются прерогативой человека [2]. При этом интеллектуальная система — это техническая или программная система, способная решать задачи, традиционно считающиеся творческими, принадлежащие конкретной предметной области, знания о которой хранятся в памяти такой системы. Наука под названием «Искусственный интеллект» входит в комплекс компьютерных наук, а создаваемые на её основе технологии к информационным технологиям. Задачей этой науки является воссоздание с помощью вычислительных систем и иных искусственных устройств разумных рассуждений и действий
Текущее состояние нейрона определяется, как взвешенная сумма его входов.
В зависимости от функций, выполняемых нейронами в сети, можно выделить 3 типа:
В большинстве нейронных моделей тип нейрона связан с его расположением в сети. Если нейрон имеет только выходные связи, то это входной нейрон, если наоборот – выходной нейрон. В процессе функционирования сети осуществляется преобразование входного вектора в выходной, переработка информации.
Каждый
нейрон распознаёт и посылает сигнал
об одном простом событии, он не посылает
много сигналов и не распознаёт много
событий. Синапс позволяет единственному
сигналу иметь различные
Нейронная сеть состоит из слоев нейронов, которые соединены друг с другом. Детали того, как нейроны соединены между собой, заставляют задуматься над вопросом проектирования НС. Некоторые нейроны будут использоваться для связи с внешним миром, другие нейроны - только с нейронами. Они называются скрытыми нейронами.
Перечислим основные классы задач, возникающих в финансовой области, которые эффективно решаются с помощью нейронных сетей:
Экспертные
системы дают возможность получать
менеджеру необходимую
Экспертные системы (ЭС) возникли как теоретический и практический результат в применении и развитии методов искусственного интеллекта с использованием ЭВМ.
ЭС – это набор программ, выполняющий функции эксперта при решении задач из некоторой предметной области. ЭС выдают советы, проводят анализ, дают консультации, ставят диагноз. Практическое применение ЭС на предприятиях способствует эффективности работы и повышению квалификации специалистов.
Главным достоинством экспертных систем является возможность накопления знаний и сохранение их длительное время. В отличие от человека к любой информации экспертные системы подходят объективно, что улучшает качество проводимой экспертизы. при решении задач, требующих обработки большого объема знаний, возможность возникновения ошибки при переборе очень мала.
Основными отличиями ЭС от других программных продуктов являются использование не только данных, но и знаний, а также специального механизма вывода решений и новых знаний на основе имеющихся. Знания в ЭС представляются в такой форме, которая может быть легко обработана на ЭВМ. В ЭС известен алгоритм обработки знаний, а не алгоритм решения задачи. Поэтому применение алгоритма обработки знаний может привести к получению такого результата при решении конкретной задачи, который не был предусмотрен. Более того, алгоритм обработки знаний заранее неизвестен и строится по ходу решения задачи на основании эвристических правил. Решение задачи в ЭС сопровождается понятными пользователю объяснениями, качество получаемых решений обычно не хуже, а иногда и лучше достигаемого специалистами. В системах, основанных на знаниях, правила, по которым решаются проблемы в конкретной предметной области, хранятся в базе знаний. Проблемы ставятся перед системой в виде совокупности фактов.
Качество ЭС определяется размером и качеством базы знаний (правил или эвристик). Система функционирует в следующем циклическом режиме: выбор (запрос) данных или результатов анализов, наблюдения, интерпретация результатов, усвоения новой информации, выдвижении с помощью правил временных гипотез и затем выбор следующей порции данных или результатов анализов. Такой процесс продолжается до тех пор, пока не поступит информация, достаточная для окончательного заключения.
В любой момент времени в системе существуют три типа знаний:
1) Структурированные
знания – статистические
2) Структурированные
динамические знания –
3) рабочие знания – знания, применяемые для решения конкретной задачи или проведения консультации.
Все перечисленные выше знания хранятся в базе знаний. Для ее построения требуется провести опрос специалистов, являющихся экспертами в конкретной предметной области, а затем систематизировать, организовать и снабдить эти знания указателями, чтобы впоследствии их можно было легко извлечь из базы знаний.
Системы, основанные на знаниях, строятся по модульному принципу, что позволяет постепенно наращивать их базы знаний.
Компьютерные системы, которые могут лишь повторить логический вывод эксперта, принято относить к ЭС первого поколения. Однако специалисту, решающему интеллектуально сложную задачу, явно недостаточно возможностей системы, которая лишь имитирует деятельность человека. Ему нужно, чтобы ЭС выступала в роли полноценного помощника и советчика, способного проводить анализ нечисловых данных, выдвигать и отбрасывать гипотезы, оценивать достоверность фактов, самостоятельно пополнять свои знания, контролировать их непротиворечивость, делать заключения на основе прецедентов и, может быть, даже порождать решение новых, ранее не рассматриваемых задач. Наличие таких возможностей является характерным для ЭС второго поколения, концепция которых начала разрабатываться 9-10 лет назад. Экспертные системы, относящиеся ко второму поколению, называют партнерскими, или усилителями интеллектуальных способностей человека. Их общими отличительными чертами является умение обучаться и развиваться, т.е. эволюционировать.
Области применения систем, основанных на знаниях, могут быть сгруппированы в несколько основных классов: прогнозирование, планирование, контроль и управление, обучение, диагностика неисправностей в механических и электрических устройствах, медицинская диагностика.
Большинство ЭС включают знания, по содержанию которых их можно отнести одновременно к нескольким типам. Например, обучающая система может также обладать знаниями, позволяющими выполнять диагностику и планирование. Она определяет способности обучаемого по основным направлениям курса, а затем с учетом полученных данных составляет учебный план. Управляющая система может применяться для целей контроля, диагностики, прогнозирования и планирования.
Существует ряд прикладных задач, которые решаются с помощью систем, основанных на знаниях, более успешно, чем любыми другими средствами. При определении целесообразности применения таких систем нужно руководствоваться следующими критериями.
Системы, основанные на знаниях, имеют определенные преимущества перед человеком-экспертом:
Информация о работе Понятие, развитие и область применения искусственного интелекта