Проблемы надежности ПО

Автор работы: Пользователь скрыл имя, 19 Января 2012 в 09:29, курсовая работа

Описание

Существует и другое, более простое определение, согласно которому программное обеспечение представляет собой совокупность компьютерных инструкций. Оно охватывает программы, подпрограммы (разделы программы) и данные. Таким образом, программное обеспечение указывает компьютеру, что делать, как, когда, в какой последовательности и как часто. Нередко программное обеспечение называют просто программой.

Содержание

Введение 3
1 Обоснование проблемы 5
2 Причины сложившейся ситуации 6
3 Вероятностный подход к проблеме надежности 8
4 Компьютерная программа как объект исследования 9
5 Надежность и правильность программы 10
6 Основные причины отказов ПО 12
7 Основные показатели надежности ПО 15
8 Модель последовательности испытаний Бернулли 16
9 Некоторые следствия 18
10 Методы повышения надёжности программного обеспечения 20
11 Заключение 22
12 Библиография 23

Работа состоит из  1 файл

Курсовой Китайцева.doc

— 140.50 Кб (Скачать документ)
 

Содержание 

 

Введение

     Программное обеспечение - согласно ГОСТ 19781-90 - совокупность программ системы обработки информации и программных документов, необходимых  для их эксплуатации.

     Существует и другое, более простое определение, согласно которому программное обеспечение представляет собой совокупность компьютерных инструкций. Оно охватывает программы, подпрограммы (разделы программы) и данные. Таким образом, программное обеспечение указывает компьютеру, что делать, как, когда, в какой последовательности и как часто. Нередко программное обеспечение называют просто программой.

     Компьютерные  программы состоят из перечней команд, которые заставляют компьютер выполнять нужную работу. Компьютер должен получать исчерпывающие конкретные команды. Часто компьютерные программы имеют вид стенограммы.

     Надежность  программного обеспечения - способность  программного продукта безотказно выполнять  определенные функции при заданных условиях в течение заданного  периода времени с достаточно большой вероятностью. Степень надежности характеризуется вероятностью работы программного продукта без отказа в течение определенного периода времени.

     Так как со стороны клиента наблюдается  устойчивый рост требований к таким  характеристикам программных систем, как надежность и производительность, роль фазы системного тестирования приобретает критически важную роль для успеха проекта в целом. Хотя перед поставкой разработанной системы клиенту, она и проходит через несколько этапов тестирования согласно требованиям международной системы управления качеством всё равно недочёты в надёжности программного обеспечения возможны.

     Надежность  программного обеспечения гораздо  важнее других его характеристик, например, времени исполнения, и хотя абсолютная надежность современного программного обеспечения, по-видимому, недостижима, до сих пор не существует общепринятой меры надежности компьютерных программ. В данном реферате анализируются причины создавшегося положения, и предлагается подход к решению проблемы.

 

1 Обоснование проблемы

 

     Проблема  надежности программного обеспечения  относится, похоже, к категории "вечных". В посвященной ей монографии Г.Майерса ([1]), выпущенной в 1980 году (американское издание - в 1976), отмечается, что, хотя этот вопрос рассматривался еще на заре применения вычислительных машин, в 1952 году, он не потерял актуальности до настоящего времени. Отношение к проблеме довольно выразительно сформулировано в книге Р.Гласса ([2]): "Надежность программного обеспечения - беспризорное дитя вычислительной техники". Следует далее отметить, что сама проблема надежности программного обеспечения имеет, по крайней мере, два аспекта: обеспечение и оценка (измерение) надежности. Практически вся имеющаяся литература на эту тему, включая упомянутые выше монографии, посвящена первому аспекту, а вопрос оценки надежности компьютерных программ оказывается еще более "беспризорным". Вместе с тем очевидно, что надежность программы гораздо важнее таких традиционных ее характеристик, как время исполнения или требуемый объем оперативной памяти, однако никакой общепринятой количественной меры надежности программ до сих пор не существует.

     Для обеспечения надежности программ предложено множество подходов, включая организационные  методы разработки, различные технологии и технологические программные средства, что требует, очевидно, привлечения значительных ресурсов. Однако отсутствие общепризнанных критериев надежности не позволяет ответить на вопрос, насколько надежнее становится программное обеспечение при соблюдении предлагаемых процедур и технологий и в какой степени оправданы затраты. Таким образом, приоритет задачи оценки надежности должен быть выше приоритета задачи ее обеспечения, чего на самом деле не наблюдается.

     Цель  настоящего реферата - привлечь внимание к указанному вопросу и, по мере возможности, внести в него ясность.

 

2 Причины сложившейся ситуации

 

     Судя  по имеющимся публикациям, вопрос обеспечения  надежности программ считается более  важным, чем вопрос ее оценки. Ситуация выглядит парадоксальной: совершенно очевидно, что прежде, чем улучшать какую-то характеристику, следует научиться ее измерять, и уж, по крайней мере, необходимо иметь единицу измерения. Основная причина такого положения коренится в том, что источником ненадежности программ служат содержащиеся в них ошибки, и если ошибки отсутствуют, то программа абсолютно надежна. По существу, все меры по обеспечению надежности программ направлены на то, чтобы свести к минимуму (если не исключить вообще) ошибки при разработке и как можно раньше их выявить и устранить после изготовления программы. Следует заметить, что безошибочные программы, конечно же, существуют, однако современные программные системы слишком велики и почти неизбежно содержат ошибки. Хотя это обстоятельство отмечается многими авторами и известно любому программисту-практику, существует, по-видимому, некий психологический барьер, не позволяющий признать факт наличия ошибок в программном обеспечении неизбежной реальностью: поскольку не существует точного критерия, позволяющего определить максимальный размер свободной от ошибок программы, всегда остается надежда, что в данной конкретной программной системе их не осталось.

     Имеется еще одно обстоятельство психологического характера. Как известно, вопрос надежности для аппаратуры хорошо разработан. Источником ненадежности аппаратуры служат объективные факторы, неподвластные человеку (скачки напряжения питания, альфа-частицы и т.д.), поэтому человечество давно смирилось с мыслью о том, что абсолютно надежной аппаратуры не бывает и можно говорить лишь о степени надежности, выражаемой в каких-то единицах (например, среднее время между двумя последовательными отказами). Источник же ненадежности программ ошибки, которые делают люди, их создающие и использующие, поэтому кажется, что проблема лишь в том, чтобы заставить (или научить) их работать "правильно".

     Третья  причина состоит в том, что  проблему выбора единицы измерения  надежности компьютерной программы  невозможно решить в рамках промышленного  подхода, который в настоящее  время занимает в программировании все более доминирующее положение. Наиболее характерный пример - использование, по аналогии с аппаратурой, в качестве меры надежности программы среднего времени между двумя последовательными ошибочными срабатываниями. Рассуждения в обоснование аналогий такого рода В.Турский ([3]) довольно резко охарактеризовал как наукообразные; сама же характеристика плохо отражает суть дела и не получила широкого признания.

     Метод аналогий, конечно, универсален, однако не следует забывать, что любая  аналогия имеет границы применимости. В данном случае, поскольку речь идет о фундаментальном понятии (единице измерения), следует не просто переносить характеристики надежности аппаратуры на программы, а воспользоваться более фундаментальными аналогиями.

 

     

3 Вероятностный подход к проблеме надежности

 

     Прежде  всего полезно напомнить, откуда берутся характеристики надежности аппаратуры. Надежность, в конечном счете, - понятие статистическое, т.е. предполагается наличие некоторого (достаточно большого) количества одинаковых образцов, испытаний и т.д. Существенно также, что имеется элемент случайности. Изучению случайных явлений посвящен специальный раздел математики: теория вероятностей. Основное понятие этой теории - пространство элементарных событий (выборочное пространство, пространство исходов), на котором задается некоторая (вероятностная) мера. Случайная величина, согласно теории, есть функция, заданная на пространстве элементарных событий. Наконец, в качестве меры надежности используются некоторые характеристики случайной величины (как правило, математическое ожидание).

     Таким образом, последовательный вероятностный  подход при изучении надежности состоит  в анализе исследуемого объекта (самолета, системы охраны, компьютерной программы и т.д.), построении, исходя из "физических" соображений о  его природе, пространств элементарных событий, введении на них вероятностной меры и рассмотрении случайных величин.

     К сожалению, первый этап исследований - анализ объекта и построение пространств  элементарных событий - обычно опускают и сразу переходят к рассмотрению случайных величин, упуская из вида, что случайная величина есть на самом деле функция, заданная на пространстве элементарных событий.

 

4 Компьютерная программа как объект исследования

 

     Прежде  чем говорить о надежности объекта, следует уточнить, что подразумевается под объектом. Как известно, компьютерная программа имеет несколько разных форм (или представлений): внешние спецификации, исходный текст, исполняемый код и т.д. Общепринятая точка зрения состоит в том, что программа представляет собой объект, инвариантный относительно форм его представления. Согласно этой точке зрения, внешние спецификации, исходные тексты на языках разных уровней, а также исполняемые коды для разных процессоров есть разные формы представления одной и той же программы. Указанная точка зрения полезна при разработке программного обеспечения, поскольку позволяет выявить наиболее существенные для приложения свойства программы, общие для всех ее представлений, однако она малопродуктивна, если речь идет, например, о такой количественной характеристике, как время исполнения: ясно, что указанная характеристика относится лишь к одной из форм представления - исполняемомому коду и, кроме того, зависит не только от программы, но и от типа процессора.

     На  интуитивном уровне понятие надежности программы отражает тот факт, что она не всегда может давать правильный результат. Это означает, что надежность программы является характеристикой ее исполняемого кода. Исполняемый код соотносится с исходным текстом так же, как, например, электродвигатель и его чертежи: можно говорить о надежности изготовленного изделия, но бессмысленно говорить о надежности описания, чертежа, текста. Две функционально идентичные программы, написанные на разных языках, или подготовленные для разных типов машин, или для одной и той же машины, но с использованием разных компиляторов, с точки зрения надежности следует считать разными.

 

     

5 Надежность и правильность программы

 

     Программа считается правильной, если она не содержит ошибок. Такая программа  не дает неверных результатов, т.е. она абсолютно надежна. Этот факт породил ложное представление о том, что число ошибок в программе можно считать наиболее естественной мерой надежности ([1]). Было выполнено довольно много работ, в которых предлагались различные методы оценки числа оставшихся в программе ошибок по результатам ее тестирования, в том числе метод "засорения" известными ошибками, однако, как показывают приводимые ниже соображения, количество ошибок в программе не имеет никакого отношения к ее надежности:

     1. Число ошибок в программе - величина "ненаблюдаемая", наблюдаются не сами ошибки, а результат их проявления.

     2. Неверное срабатывание программы может быть следствием не одной, а сразу нескольких ошибок.

     3. Ошибки могут компенсировать друг друга, так что после исправления какой-то одной ошибки программа может начать "работать хуже".

     4. Надежность характеризует частоту проявления ошибок, но не их количество; в то же время хорошо известно, что ошибки проявляются с разной частотой: некоторые ошибки остаются невыявленными после многих месяцев и даже лет эксплуатации, но, с другой стороны, нетрудно привести примеры, когда одна единственная ошибка приводит к неверному срабатыванию программы при любых исходных данных, т.е. к нулевой надежности.

     Следует также отметить, что если число ошибок рассматривать как меру надежности, то в терминологии теории вероятностей это число есть случайная величина, однако самый главный вопрос - на каком пространстве элементарных событий она задана - нигде не затрагивался.

     Наконец, важно подчеркнуть, что, с точки зрения надежности, в результате исправления ошибки или любой другой коррекции получается новая программа с другим, чем до коррекции, показателем надежности.

     Таким образом, число ошибок в программе  характеризует скорее не программу, а ее изготовителей и используемый инструментарий.

 

     

6 Основные причины  отказов ПО

 

     Основными причинами, вызывающими нарушения  нормального функционирования ПО, являются:

  1. Ошибки, скрытые в самой программе;
  2. Искажение входной информации;
  3. Неверные действия пользователя;
  4. Неисправность аппаратных средств ИС, на которой реализуется вычислительный процесс.

     Ошибки, скрытые в программе. При разработке сложного ПО возможно возникновение ошибок, которые не всегда удается обнаружить и ликвидировать в процессе отладки. В силу этого в программах остается некоторое количество скрытых ошибок. Они являются причиной неверного функционирования этих программ. Среди ошибок подобного рода можно выделить следующие характерные группы.

     Ошибки  вычислений. Ошибки этой группы связаны с некорректной записью или программированием математических выражений, а также неверное преобразование типов переменных. Вследствие этого получаются неправильные результаты.

Информация о работе Проблемы надежности ПО