Шпаргалка по "Информатике"

Автор работы: Пользователь скрыл имя, 13 Мая 2013 в 23:49, шпаргалка

Описание

Билет №1: Информатизация общества. Основные этапы развития вычислительной техники. Под информатизацией общества понимают реализацию комплекса мер, направленных на обеспечение полного и своевременного использования членами общества достоверной информации, что в значительной мере зависит от степени освоения и развития новых информационных технологий.
Билет № 20Глобальная сеть Интернет и ее информационные ресурсы (электронная почта, доски объявлений, телеконференции, поисковые системы и т.д.) Этические и правовые нормы работы с информацией.

Работа состоит из  1 файл

_informatika_bil.doc

— 350.00 Кб (Скачать документ)

 

 

 

 

Билет № 11 
Электронные таблицы. Назначение и основные. 
     Современные технологии обработки информации часто приводят к тому, что возникает необходимость представления данных в виде таблиц. В языках программирования для такого представления служат двухмерные массивы. Для табличных расчетов характерны относительно простые формулы, по которым производятся вычисления, и большие объемы исходных данных. Такого рода расчеты принято относить к разряду рутинных работ, для их выполнения следует использовать компьютер. Для этих целей созданы электронные таблицы (табличные процессоры) — прикладное программное обеспечение общего назначения, предназначенное для обработки различных данных, представимых в табличной форме. 
      Электронная таблица (ЭТ) позволяет хранить в табличной форме большое количество исходных данных, результатов, а также связей (алгебраических или логических соотношений) между ними. При изменении исходных данных все результаты автоматически пересчитываются и заносятся в таблицу. Электронные таблицы не только автоматизируют расчеты, но и являются эффективным средством моделирования различных вариантов и ситуаций. Меняя значения исходных данных, можно следить за изменением получаемых результатов и из множества вариантов решения задачи выбрать наиболее приемлемый. 
       При работе с табличными процессорами создаются документы, которые также называют электронными таблицами. Такие таблицы можно просматривать, изменять, записывать на носители внешней памяти для хранения, распечатывать на принтере. 
         Рабочим полем табличного процессора является экран дисплея, на котором электронная таблица представляется в виде прямоугольника, разделенного на строки и столбцы. Строки нумеруются сверху вниз. Столбцы обозначаются слева направо. На экране виден не весь документ, а только часть его. Документ в полном объеме хранится в оперативной памяти, а экран можно считать окном, через которое пользователь имеет возможность просматривать таблицу. Для работы с таблицей используется табличный курсор, — выделенный прямоугольник, который можно поместить в ту или иную клетку. Минимальным элементом электронной таблицы, над которым можно выполнять те или иные операции, является такая клетка, которую чаще называют ячейкой. Каждая ячейка имеет уникальное имя (идентификатор), которое составляется из номеров столбца и строки, на пересечении которых располагается ячейка. Нумерация столбцов обычно осуществляется с помощью латинских букв (поскольку их всего 26, а столбцов значительно больше, то далее идёт такая нумерация — AA, AB, ..., AZ, BA, BB, BC, ...), а строк — с помощью десятичных чисел, начиная с единицы. Таким образом, возможны имена (или адреса) ячеек B2, C265, AD11 и т.д. 
         Следующий объект в таблице — диапазон ячеек. Его можно выделить из подряд идущих ячеек в строке, столбце или прямоугольнике. При задании диапазона указывают его начальную и конечную ячейки, в прямоугольном диапазоне — ячейки левого верхнего и правого нижнего углов. Наибольший диапазон представляет вся таблица, наименьший — ячейка. Примеры диапазонов — A1:A100; B12:AZ12; B2:K40. 
         Если диапазон содержит числовые величины, то они могут быть просуммированы, вычислено среднее значение, найдено минимальное или максимальное значение и т.д. 
         Иногда электронная таблица может быть составной частью листа, листы, в свою очередь, объединяются в книгу (такая организация используется в Microsoft Excel). 
        Ячейки в электронных таблицах могут содержать числа (целые и действительные), символьные и строковые величины, логические величины, формулы (алгебраические, логи-ческие, содержащие условие). 
         В формулах при обращении к ячейкам используется два способа адресации — абсолютная и относительная адресации. При использовании относительной адресации копирование, перемещение формулы, вставка или удаление строки (столбца) с изменением местоположения формулы приводят к перестраиванию формулы относительно её нового местоположения. В силу этого сохраняется правильность расчётов при любых указанных выше действиями над ячейками с формулами. В некоторых же случаях необходимо, чтобы при изменении местоположения формулы адрес ячейки (или ячеек), используемой в формуле, не изменялся. В таких случаях используется абсолютная адресация. В приведенных выше примерах адресов ячеек и диапазонов ячеек адресация является относительной. Примеры абсолютной адресации (в Microsoft Excel): $A$10; $B$5:$D$12; $M10; K$12 (в предпоследнем примере фиксирован только столбец, а строка может изменяться, в последнем — фиксирована строка, столбец может изменяться). 
           Управление работой электронной таблицы осуществляется посредством меню команд. Можно выделить следующие режимы работы табличного процессора:

·         формирование электронной таблицы;

·         управление вычислениями;

·         режим отображения формул;

·         графический режим;

·         работа электронной таблицы как базы данных.

При работе с табличными процессорами создаются документы, которые можно просматривать, изменять, записывать на носители внешней памяти для хранения, распечатывать на принтере. Режим формирования электронных таблиц предполагает заполнение и редактирование документа. При этом используются команды, изменяющие содержимое клеток (очистить, редактировать, копировать), и команды, изменяющие структуру таблицы (удалить, вставить, переместить).

Режим управления вычислениями. Все вычисления начинаются с ячейки, расположенной на пересечении первой строки и первого столбца электронной таблицы. Вычисления проводятся в естественном порядке, т.е. если в очередной ячейке находится формула, включающая адрес еще не вычисленной ячейки, то вычисления по этой формуле откладываются до тех пор, пока значение в ячейке, от которого зависит формула, не будет определено. При каждом вводе нового значения в ячейку документ пересчитывается заново, — выполняется автоматический пересчет. В большинстве табличных процессоров существует возможность установки ручного пересчета, т.е. таблица пересчитывается заново только при подаче специальной команды.

Режим отображения формул задает индикацию содержимого клеток на экране. Обычно этот режим выключен, и на экране отображаются значения, вычисленные на основании содержимого клеток.

Графический режим дает возможность отображать числовую информацию в графическом виде: диаграммы и графики. Это позволяет считать электронные таблицы полезным инструментом автоматизации инженерной, административной и научной деятельности.

В современных  табличных процессорах, например, в Microsoft Excel, в качестве базы данных можно использовать список (набор строк таблицы, содержащий связанные данные). При выполнении обычных операций с данными, например, при поиске, сортировке или обработке данных, списки автоматически распознаются как базы данных. Перечисленные ниже элементы списков учитываются при организации данных:

·         столбцы списков становятся полями базы данных;

·         заголовки столбцов становятся именами полей базы данных;

·         каждая строка списка преобразуется в запись данных.

 

 

 

Билет № 12. Система управления базами данных (СУБД),  
Назначение и основные функции.  
База данных – это информационная модель, позволяющая упорядоченно хранить данные о группе объектов, обладающих одинаковым набором свойств. 
Программное обеспечение, предназначенное для работы с базами данных, называется система управления базами данных (СУБД). СУБД используются для упорядоченного хранения и обработки больших объемов информации. 
СУБД организует хранение информации таким образом, чтобы ее было удобно: просматривать, пополнять, изменять, искать нужные сведения, делать любые выборки, осуществлять сортировку в любом порядке.  
Классификация баз данных:

  1. По характеру хранимой информации:  
    — Фактографические (картотеки), 
    — Документальные (архивы)
  2. По способу хранения данных: 
    — Централизованные (хранятся на одном компьютере), 
    — Распределенные (используются в локальных и глобальных компьютерных сетях).
  • По структуре организации данных: 
    — Табличные (реляционные), 
    — Иерархические. 
    Информация в базах данных структурирована на отдельные записи, которыми называют группу связанных между собой элементов данных. Характер связи между записями определяет два основных типа организации баз данных: иерархический и реляционный. 
           В иерархической базе данных записи упорядочиваются в определенную последовательность, как ступеньки лестницы, и поиск данных может осуществляться последовательным «спуском» со ступени на ступень. Иерархическая база данных по своей структуре соответствует структуре иерархической файловой системы. 
           Реляционная база данных, по сути, представляет собой двумерную таблицу.  
    Столбцы таблицы называются полями: каждое поле характеризуется своим именем и топом данных. Поле БД – это столбец таблицы, содержащий значения определенного свойства. 
           В реляционной БД используются четыре основных типов полей: Числовой, Символьный (слова, тексты, коды и т.д.), Дата (календарные даты в форме «день/месяц/год»), Логический (принимает два значения: «да» - «нет» или «истина» - «ложь»).  
    Строки таблицы являются записями об объекте. Запись БД – это строка таблицы, содержащая набор значения определенного свойства, размещенный в полях базы данных. 
       Системы управления базами данных позволяют объединять большие объемы информации и обрабатывать их, сортировать, делать выборки по определенным критериям и т. п. 

Современные СУБД дают возможность включать в них не только текстовую и графическую информацию, но и звуковые фрагменты и даже видеоклипы. 
Простота использования СУБД позволяет создавать новые базы данных, не прибегая к программированию, а пользуясь только встроенными функциями. СУБД обеспечивают правильность, полноту и непротиворечивость данных, а также удобный доступ к ним. 
Популярные СУБД - FoxPro, Access for Windows, Paradox. Для менее сложных применений вместо СУБД используются информационно-поисковые системы (ИПС), которые выполняют следующие функции: хранение большого объема информации; быстрый поиск требуемой информации; добавление, удаление и изменение хранимой информации; вывод ее в удобном для человека виде.

 

 

 

Билет № 13: Понятие алгоритма. Свойства алгоритмов. Возможность автоматизации деятельности человека.  
    Каждый из нас постоянно встречается с множеством задач от самых простых и хорошо известных до очень сложных. Для многих задач существуют определенные правила (инструкции, предписания), объясняющие исполнителю, как решать данную задачу. Эти правила человек может изучить заранее или сформулировать сам в процессе решения задачи. Такие правила принято называть алгоритмами.     
     Под алгоритмом понимают понятное и точное предписание (указание) исполнителю совершить определенную последовательность действий, направленных на достижение указанной цели или решение поставленной задачи.     
     Слово алгоритм происходит от algorithmi — латинской формы написания имени великого математика IX в. аль-Хорезми, который сформулировал правила выполнения арифметических действий. Первоначально под алгоритмами и понимали только правила выполнения четырех арифметических действий над многозначными числами. В дальнейшем это понятие стали использовать вообще для обозначения последовательности действий, приводящих к решению поставленной задачи.     
     Рассмотрим пример алгоритма для нахождения середины отрезка при помощи циркуля и линейки.     
     Алгоритм деления отрезка АВ пополам:     
     1) поставить ножку циркуля в точку А;     
     2) установить раствор циркуля равным длине отрезка АВ;     
     3) провести окружность;     
     4) поставить ножку циркуля в точку В;     
     5) провести окружность;     
     6) через точки пересечения окружностей провести прямую;     
     7) отметить точку пересечения этой прямой с отрезком АВ.     
     Каждое указание алгоритма предписывает исполнителю выполнить одно конкретное законченное действие. Исполнитель не может перейти к выполнению следующей операции, не закончив полностью выполнения предыдущей. Предписания алгоритма надо выполнять последовательно одно за другим, в соответствии с указанным порядком их записи. Выполнение всех предписаний гарантирует правильное решение задачи. Данный алгоритм будет понятен исполнителю, умеющему работать с циркулем и знающему, что такое поставить ножку циркуля, провести окружность и т. д. 
         Анализ примеров различных алгоритмов показывает, что запись алгоритма распадается на отдельные указания исполнителю выполнить некоторое законченное действие. Каждое такое указание называется командой. Команды алгоритма выполняются одна за другой. После каждого шага исполнения алгоритма точно известно, какая команда должна выполняться следующей. 
         Поочередное выполнение команд алгоритма за конечное число шагов приводит к решению задачи, к достижению цели. Разделение выполнения решения задачи на отдельные операции (выполняемые исполнителем по определенным командам) — важное свойство алгоритмов, называемое дискретностью.     
     Каждый алгоритм строится в расчете на некоторого исполнителя. Для того чтобы исполнитель мог решить задачу по заданному алгоритму, необходимо, чтобы он был в состоянии понять и выполнить каждое действие, предписываемое командами алгоритма. Такое свойство алгоритмов называется определенностью (или точностью) алгоритма.     
     Совокупность команд, которые могут быть выполнены исполнителем, называется системой команд исполнителя.     
     Еще одно важное требование, предъявляемое к алгоритмам, — результативность (или конечность) алгоритма. Оно означает, что исполнение алгоритма должно закончиться за конечное число шагов.     
     Приведем еще один пример алгоритма.     
     Игра Ваше (в игре участвуют двое).     
     Рассмотрим частный случай этой игры. Имеется 15 предметов. Соперники ходят по очереди, за каждый ход любой из играющих может взять 1, 2 или 3 предмета. Проигрывает тот, кто вынужден взять последний предмет.     
     Алгоритм выигрыша для первого игрока имеет следующий вид:     
     1) взять два предмета;     
     2) второй и последующий ходы делать так, чтобы количество предметов, взятых вместе с соперником за очередной ход, в сумме составляло 4.     
     Данный алгоритм приводит к выигрышу для 7, 11, 15, 19, ... предметов.     
     Человек, пользующийся данным алгоритмом, всегда будет выигрывать в этой игре. Ему совершенно необязательно знать, почему надо поступать именно так, а не иначе. Для успешной игры от него требуется только строго следовать алгоритму.     
     Таким образом, выполняя алгоритм, исполнитель может не вникать в смысл того, что он делает, и вместе с тем получать нужный результат. В таком случае говорят, что исполнитель действует формально, т. е. отвлекается от содержания поставленной задачи и только строго выполняет некоторые правила, инструкции.     
     Это очень важная особенность алгоритмов. Наличие алгоритма формализовало процесс, исключило рассуждения. Если обратиться к примерам других алгоритмов, то можно увидеть, что и они позволяют исполнителю действовать формально. Таким образом, создание алгоритма дает возможность решать задачу формально, механически исполняя команды алгоритма в указанной последовательности.     
     Построение алгоритма для решения задачи из какой-либо области требует от человека глубоких знаний в этой области, бывает связано с тщательным анализом поставленной задачи, сложными, иногда очень громоздкими рассуждениями. На поиски алгоритма решения некоторых задач ученые затрачивают многие годы. Но когда алгоритм создан, решение задачи по готовому алгоритму уже не требует каких-либо рассуждений и сводится только к строгому выполнению команд алгоритма.     
     В этом случае исполнение алгоритма можно поручить не человеку, а машине. Действительно, простейшие операции, на которые при создании алгоритма расчленяется процесс решения задачи, может реализовать и машина, специально созданная для выполнения отдельных команд алгоритма и выполняющая их в последовательности, указанной в алгоритме. Это положение и лежит в основе работы автоматических устройств, автоматизации деятельности человека.

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Билет № 14: Линейная алгоритмическая конструкция. Команда присваивания. Примеры.     Для представления алгоритма в виде, понятном компьютеру, служат языки программирования. Сначала разрабатывается алгоритм действий, а потом он записывается на одном из таких языков. В итоге получается текст программы - полное, законченное и детальное описание алгоритма на языке программирования. Затем этот текст программы специальными служебными приложениями, которые называются трансляторами, либо переводится в машинный код (язык нулей и единиц), либо исполняется. 
      Языки программирования - искусственные языки. От естественных они отличаются ограниченным числом "слов", значение которых понятно транслятору, и очень строгими правилами записи команд (операторов). 
      Существует большое количество алгоритмов, в которых команды должны быть выполнены одна за другой.  Такие алгоритмы называются линейными. 
      Программа имеет линейную структуру, если все операторы (команды) выполняются последовательно друг за другом. 
 Пример: программа, складывающая два числа 
REM Сумма двух чисел 
a = 5 
b = 6 
c = a + b 
PRINT "Результат: ", c 
END 
или так: 
REM Сумма двух чисел 
DIM a, b, c AS INTEGER 
a = 5 
b = 6 
c = a + b 
PRINT "Результат: ", c 
END 
Пример: Вычислите площадь прямоугольника по его сторонам.REM Площадь прямоугольника 
INPUT "Введите сторону а", а 
INPUT "Введите сторону b", b 
s = a * b 
PRINT "Площадь равна: ", s 
END 
Разберем  эти примеры. 
Некоторые операторы языка Basic. 
REM – оператор комментария. Все что следует после этого оператора до конца строки игнорируется компилятором и предназначено исключительно для человека. Т.е. здесь можно писать что угодно. Удобно использовать комментарий в начале программы для указания её названия и назначения. 
PRINT (вывод, печать) – оператор вывода. 
INPUT (ввод) – оператор ввода. Используется для передачи в программу каких-либо значений. 
DIM – оператор описания типа переменной. 
Под переменной языках программирования понимают программный объект (число, слово, часть слова, несколько слов, символы), имеющий имя и значение, которое может быть получено и изменено программой. 
Если "заглянуть" в компьютер, то переменную можно определить так: 
Переменная - это имя физического участка в памяти, в котором в каждый момент времени может быть только одно значение. 
Переменная - это ячейка в оперативной памяти компьютера для хранения какой-либо информации. 
Само название "переменная" подразумевает, что содержимое этого участка может изменяться. 
В качестве имен переменных могут быть латинские буквы с индексами. Причем может быть не одна буква, а несколько. 
Пример: 
DIM a, b, chislo1 AS INTEGER 
Integer – целые числа от -32768 до 32768 
Если в программе используются переменные не описанные с помощью оператора DIM, то компьютер будет рассматривать их как универсальные переменные. Это может привести к неэффективному использованию оперативной памяти. К тому же, такие программы не всегда легки для восприятия - плохо читаемы. 
Процесс решения вычислительной задачи - это процесс последовательного изменения значений переменных. В итоге - в определенных переменных получается результат. Переменная получает определенное значение в результате присваивания. Присваивание - это занесение в ячейку, отведенную под переменную, определенного значения в результате выполнения команды. 
Для задания значения переменной служит оператор присваивания. Он записывается так: 
LET переменная = значение (или просто: переменная = значение) 
Ключевое слово LET в большинство случаев не используется. 
Пример: 
LET a = 3 
chislo1 = 15 
При выполнении оператора присваивания переменная, имя которой указано слева от знака равенства, получает значение, равное значению выражения (арифметического, строкового или логического), которое находится справа от знака равенства. 
В результате операции а=5 переменная а получает значение 5.  
В результате операции с=a+b переменная с получает значение равное сумме значений переменной а и b.  
Программистам иногда бывает нужно поменять значения, хранящиеся в разных переменных. Например, в переменной a храниться число 3, а в переменной b - число 5. Как сделать так, чтобы переменные обменялись своими значениями? 
Просто присвоить переменной a или b значение другой переменной нельзя, ведь тогда ее исходное значение будет перезаписано и утрачено. В таких случаях вводят дополнительную переменную (например, temp) и присваивают значения через нее. 
Пример: 
a=3 
b=5 
temp=a 
a=b 
b=temp 
Иногда в программах (особенно с циклами) можно встретить такую запись: s=s+i. С точки зрения математики это совершенно бессмысленная запись, но рассмотрим её внимательней.  
Оператор = это не равно, а оператор присваивания. s=s+i - звучит не "переменная s равно переменная s плюс переменная i", а так: "переменной s присвоить значение равное сумме значений переменной s до присваивания и переменной i" 
В результате операции s=s+i переменная s получает значение равное сумме предыдущего значения переменной s и значения переменной i. Т.е., если до операции присваивания значение s было равно 5, а переменной i равно 3, то после операции значение переменной s будет равно 8 (5+3, старое значение s + значение i). 
END – оператор конца программы.

Информация о работе Шпаргалка по "Информатике"