Система "человек-машина"

Автор работы: Пользователь скрыл имя, 25 Января 2012 в 08:36, курсовая работа

Описание

Русские ученые еще в конце прошлого века предприняли попытки разработать научные и теоретические основы учения о труде. Пионером в этой области явился великий русский ученый И. М. Сеченов, который первым поставил вопрос об использовании научных данных о человеке для рационализации трудовой деятельности. И. М. Сеченов занялся изучением роли психических процессов при выполнении трудовых актов, поставил вопрос о формировании трудовых навыков и впервые показал, что в процессе трудового обучения изменяется характер регуляции: функции регулятора переходят от зрения к осязанию.

Содержание

Введение.
Основная часть.
Особенности классификации системы «человек – машина».
Показатели качества системы «человек – машина».
Оператор в системе «человек машина».
III. Заключение.

Работа состоит из  1 файл

СИСТЕМА ЧЕЛОВЕК-МАШИНА.doc

— 275.50 Кб (Скачать документ)

                                      Тдоп

    Рсв = Р {Тц < Тдоп} © φ (Т) dT,

                                            0

где φ (Т)функция плотности времени решения задачи системой «человек — машина».

Эта же вероятность  по статистическим данным оценивается по выражению 

        Рсв= 1 – mнс / N 

где mнс — число несвоевременно решенных СЧМ задач.

При определении  величин mош и mнс, а следовательно, и при оценке вероятностей Pпр и Рсв не имеет значения, за счет каких причин (некачественной работы машины или некачественной деятельности оператора) неправильно или несвоевременно решена задача системой «человек — машина».

        Поскольку большинство СЧМ работают  в рамках определенных временных ограничений, то несвоевременное решение задачи приводит к недостижению цели, стоящей перед системой «человек — машина». Поэтому в этих случаях в качестве общего показателя надежности используется вероятность правильного (Рпр) и своевременного (Рсв) решения задачи

        Рсмч= PпрРсв ,

 

   Такой  показатель используется, например, при применении обобщенного структурного метода оценки надежности СЧМ [см. 31]. 
 

        Безопасность труда человека в СЧМ оценивается вероятностью безопасной работы 

                                     n

           Рсчм= 1 - ∑ Pвоз I Pош I ,

                         i=1                             

где Рвоз iвероятность возникновения опасной или вредной для человека производственной ситуации  i-го типа; РОШ i — вероятность неправильных действий оператора в i-й ситуации; n — число возможных травмоопасных ситуаций.

        Опасные и вредные ситуации могут создаваться как техническими причинами (неисправность машины, аварийная ситуация, неисправность защитных сооружений), так и нарушениями правил и мер безопасности со стороны людей. При этом, в условиях автоматизированного производства, когда контакт человека с рабочими частями машин и оборудования сравнительно невелик, большая роль в возникновении опасных и вредных для человека ситуаций принадлежит психофизиологическим факторам. Их влияние также нужно учитывать при определении показателя Рбт.

       Степень автоматизации  СЧМ характеризует относительное количество информации, перерабатываемой автоматическими устройствами. Эта величина определяется по формуле

 

     Ka= 1 – Ноп / Нсмч , 
 

где Нопколичество информации, перерабатываемой оператором; Нсчм — общее количество информации, циркулирующей в системе «человек — машина».

        

              Для каждой СЧМ существует  некоторая оптимальная степень  автоматизации (koпт), при которой эффективность СЧМ становится максимальной. При этом чем сложнее СЧМ, тем больше потери эффективности из-за неправильного выбора степени автоматизации. Это видно из сравнения кривых 1 и 2 на рис.  Оптимальная степень автоматизации устанавливается в процессе решения задачи распределения функций между человеком и машиной. 
 
 
 

 
 
 
 
 
 

   
 
 

Зависимость эффективности СЧМ от степени автоматизации: 1 — для    простых    систем;    2 для    сложных    систем 
 
 

          Экономический показатель  характеризует полные затраты на систему «человек — машина». В общем случае эти затраты складываются из трех составляющих: затрат на создание (изготовление) системы Си, затрат на подготовку операторов Соп и эксплуатационных расходов Сэ. По отношению к процессу эксплуатации затраты Си и Соп являются, как правило, капитальными. Тогда полные приведенные затраты в СЧМ определяются выражением

   Wсчм=Сэ + Еноп + Си),

где Ен  — нормативный коэффициент экономической эффективности капитальных затрат.

       При заданной величине Wсчм  путем перераспределения затрат между отдельными составляющими Си, Соп и Сэ можно получить различные значения общей эффективности СЧМ. И, наоборот, заданная эффективность СЧМ может быть обеспечена с помощью различных затрат в зависимости от распределения их между отдельными составляющими. Методы технико-экономической оптимизации СЧМ (получение заданной эффективности при минимуме Wсчм или получение максимума эффективности при заданной величине Wсчм) путем перераспределения затрат Си, Соп и Сэ .

           Большое значение при анализе и оценке СЧМ имеют эргономические показатели. Они учитывают совокупность специфических свойств системы «человек — машина», обеспечивающих возможность осуществления в ней деятельности человека (группы людей). Эргономические показатели представляют собой иерархическую структуру, включающую в себя целостную эргономическую характеристику (эргономичность СЧМ), комплексные (управляемость, обслуживаемость, освояемость и обитаемость СЧМ), групповые (социально-психологические, психологические, физиологические, антропометрические, гигиенические) и единичные показатели.

        С помощью рассмотренных показателей  можно оценить одно или несколько  однотипных свойств СЧМ. Иногда  их может оказаться недостаточно  для решения инженерно-психологических  задач (например, при выборе одного из нескольких конкурирующих вариантов СЧМ). В этом случае нужно дать интегральную оценку качества системы «человек — машина» как совокупности всех ее основных свойств. Для этого используется понятие эффективности СЧМ, под которой понимается степень приспособленности системы к выполнению возложенных на нее функций. При определении эффективности СЧМ необходимо учесть следующие правила: для получения полной интегральной оценки следует учитывать всю совокупность частных показателей качества СЧМ;

частные показатели должны входить в общую оценку с некоторым «весом», характеризующим  их важность в данной системе;

поскольку частные  показатели имеют различный физический смысл и измеряются в разных величинах, они должны быть приведены к безразмерному и нормированному относительно некоторого эталона виду.

При этом следует  отметить, что все частные показатели с точки зрения их влияния на эффективность могут быть повышающими (надежность, безопасность, своевременность и т. п.) или понижающими (затраты, время решения задачи и др.)- Поэтому нормирование производится следующим образом:

        для повышающих показателей

                        Эi= Ei / Emax i

       для понижающих показателей

                        Эi= Ei / Emin i 

где Эi и Ei — соответственно нормированное и абсолютное значение i-го частного показателя; Emax i и emin i — максимальное (минимальное) значение

 i-гo частного показателя, которое имеет существующая или проектируемая аналогичная система.

Эффективность системы представляется как некоторая совокупность частных показателей. Чаще всего применяется аддитивная функция

                                       n        

                 Эсчм= ∑ ai Эi                                

                           i=1                                
 

где аi- — «весовые» коэффициенты, сумма которых должна быть равна единице; nчисло учитываемых частных показателей.

При выполнении рассмотренных условий величина Эcчм принимает значения в пределах от нуля до единицы и представляет собой своеобразный «коэффициент полезного действия» системы «человек — машина». 

3. Оператор в системе «человек машина».

         Как уже отмечалось, независимо  от степени автоматизации СЧМ, человек остается главным звеном системы «человек — машина». Именно он ставит цели перед системой, планирует, направляет и контролирует весь процесс ее функционирования. Поэтому деятельность оператора является исходным пунктом инженерно-психологического анализа и изучения СЧМ. Деятельность оператора имеет ряд особенностей, определяемых следующими тенденциями развития современного производства.

         1. С развитием техники увеличивается  число объектов (и их параметров), которыми необходимо управлять.  Это усложняет и повышает роль  операций по планированию и организации труда, по контролю и управлению производственными процессами.

         2. Развиваются системы дистанционного  управления. Человек все более  удаляется от управляемых объектов, о динамике их состояния он  судит не по данным непосредственного наблюдения, а на основании восприятия сигналов от устройств отображения информации, имитирующих реальные производственные объекты. Осуществляя дистанционное управление, человек получает необходимую информацию в закодированном виде (т. е. в виде показаний счетчиков, индикаторов, измерительных приборов и т. д.), что обусловливает необходимость декодирования и мысленного сопоставления полученной информации с состоянием реального управляемого объекта.

        3. Увеличение сложности и скорости  течения производственных процессов выдвигает повышенные требования к точности действий операторов, быстроте принятия решений в осуществлении управленческих функций. В значительной мере возрастает степень ответственности за совершаемые действия, поскольку ошибка оператора при выполнении даже самого простого акта может привести к нарушению работы всей системы «человек — машина», создать аварийную ситуацию с угрозой для жизни работающих людей. Поэтому работа оператора в современных человеко-машинных комплексах характеризуется значительными увеличениями нагрузки на нервно-психическую деятельность человека, в связи с чем по-иному ставится проблема критериев тяжести операторского труда. Основным критерием становится не физическая тяжесть труда, а его нервно-психическая напряженность.

        4. В условиях современного производства  изменяются условия работы человека. Для некоторых видов деятельности оператора характерно ограничение двигательной активности, которое не только проявляется в общем уменьшении количества мышечной работы, но и связано с преимущественным использованием малых групп мышц. Иногда оператор должен выполнять работу в условиях изоляции от привычной социальной среды, в окружении приборов и индикаторов. И если эти устройства спроектированы без учета психофизиологических особенностей оператора либо выдают ему ложную и искаженную информацию, то возникает ситуация, которую образно называют «конфликтом» человека с приборами .

        5. Повышение степени автоматизации  производственных процессов требует от оператора высокой готовности к экстренным действиям. При нормальном протекании процесса основной функцией оператора является контроль и наблюдение за его ходом. При возникновении нарушений оператор должен осуществить резкий переход от монотонной работы в условиях «оперативного покоя» к активным, энергичным действиям по ликвидации возникших отклонений. При этом он должен в течение короткого промежутка времени переработать большое количество информации, принять и осуществить правильное решение. Это приводит к возникновению сенсорных, эмоциональных и интеллектуальных перегрузок.

         Рассмотренные особенности операторского  труда позволяют выделить его в специфический вид профессиональной деятельности, в связи с чем для его изучения, анализа и оценки недостаточно классических методов, разработанных психологией и физиологией труда и используемых для оптимизации различных видов работ, не связанных с дистанционным управлением по приборам.

           Деятельность оператора в системе  «человек — машина» может носить самый разнообразный характер. Несмотря на это, в общем виде она может быть представлена в виде четырех основных этапов.

       1. Прием информации. На этом этапе осуществляется восприятие поступающей информации об объектах управления и тех свойствах окружающей среды и СЧМ в целом, которые важны для решения задачи, поставленной перед системой «человек — машина». При этом осуществляются такие действия, как обнаружение сигналов, выделение из их совокупности наиболее значимых, их расшифровка и декодирование; в результате у оператора складывается предварительное представление о состоянии управляемого объекта: информация приводится к виду, пригодному для оценки и принятия решения.

Информация о работе Система "человек-машина"