Автор работы: Пользователь скрыл имя, 29 Февраля 2012 в 21:14, контрольная работа
Качество и стоимость машиностроительного, строительного или производственного проекта во многом определяются применяемой технологией проектирования. В былые времена вся техническая документация создавалась вручную на кульманах и чертежных досках. Но сегодня, когда ПК появились на рабочих местах конструкторов и технологов, любой проект немыслим без использования систем автоматизированного проектирования (САПР).
Введение
1. Предпосылки внедрения САПР
2. Условная классификация САПР
3. Инженерные решения
4. САПР для машиностроения
5. Архитектурно-строительные САПР
6. САПР через Интернет
7. Плоттер - спутник САПР
8. Принципы выбора
9. Новая жизнь старых чертежей
10. Обратно к карандашу
11. PLM-системы
11.1 Жизненный цикл продукта (изделия)
11.2 Product Lifecycle Management
11.3 New PLM
12. Противоречивые оценки аналитиков
13. Производители и потребители PLM
Выводы
Кроме того, САПР должна работать со стандартными протоколами обмена и хранения информации. Для современных САПР свойственна поддержка форматов DXF, TIFF, PCX, DBF, стандартов IGES, SAT, а также ЕСКД (для конструкторских САПР), так как требования ГОСТов никто не отменял, хотя о них и стали забывать.
Также желательно, чтобы система работала на различных аппаратных и программных платформах (особенно Windows и UNIX/Linux) и интегрировалась в единую систему электронного документооборота и архива предприятия. Что же касается аппаратной платформы, то это в первую очередь, зависит от круга решаемых задач. Если компания решает не очень сложные задачи, то стоит использовать системы на базе ПК. Будет нерационально, если рабочая станция по цене от $5000-10 000 простаивает значительное время из-за отсутствия подготовленных сотрудников. В то же время как ПК вполне могут применяться для решения других задач. В пользу ПК говорит и интерфейс, более привычный для большинства пользователей.
Основное преимущество рабочих станций - высокая производительность, поэтому если объем и сложность поставленных задач неуклонно растет, то нужно приобретать САПР на базе рабочей станции. При этом важно помнить о том, что та мощь, которой располагают старшие модели рабочих станций, большинству приложений явно не потребуется.
Прежде, чем приобретать САПР, узнайте, как давно ее производитель работает на рынке САПР, какая поддержка оказывается пользователям, имеет ли она защиту от несанкционированного копирования, интерфейс и документацию на русском языке, какие устройства ввода-вывода поддерживаются и какая минимальная аппаратная конфигурация необходима для нормальной работы. Проверьте, как она выполняет те функции, которые особенно важны. Если САПР будет использоваться для создания рабочих чертежей деталей, то проверьте, насколько удобно проставлять и редактировать размеры, как быстро система выполняет штриховку и регенерацию изображения, возможен ли пересчет размерных цепей и автоматическая простановка допусков. Обязательно получите ответ на вопрос: может ли САПР обмениваться информацией с внешними базами данных и какие библиотеки и базы данных поставляются вместе с ней или для нее (в том числе сторонними компаниями).
Если объявлено, что система поддерживает трехмерное (3D) черчение и моделирование, проверьте, как удобно выполнены эти функции и не «рассыпается» ли модель при усложнении либо изменении конструкции. Для интегрированных систем, имеющих постпроцессоры для подготовки ЧПУ-программ, поинтересуйтесь, какие станки поддерживаются, возможна ли поставка дополнительных модулей.
При покупке зарубежных САПР уточните у продавца, есть ли у разработчика представительство в стране или конкретном регионе, присутствуют ли здесь технические специалисты, какая техническая поддержка и сопровождение оказываются.
9. Новая жизнь старых чертежей
Очень часто при проектировании приходится использовать ранее созданные детали, узлы, конструкции. И вот тогда для их быстрого перевода в электронную форму нужно применять программу распознавания чертежей. К числу функций такой программы относятся коррекция и расслоение цветных изображений, выравнивание, калибровка, фильтрация и программная бинаризация цветных изображений, представление растровых данных и векторных объектов в одном документе, векторизация (растровые линии преобразуются в точные векторные объекты) и растеризация (векторные объекты, блоки, символы и тексты из чертежей САПР переносятся в растровые изображения).
В настоящее время наибольшее распространение получили программы продукты, поддерживающие технологию Raster Arts (табл.2). Эта технология обеспечивает полную подготовку растрового изображения к печати и архивированию без перевода в векторную форму, использование сканированных изображений в инженерном документообороте, создает гибридные проекты, использующие возможности растровой и векторной графики.
Таблица 2. Программные продукты, поддерживающие Raster Arts
Программы | Возможности | |
Spotlight Pro 3.1 / Spotlight 3.1 | фильтрация, устранение линейных и нелинейных искажений растра; интеллектуальные объектные методы растрового выбора; растровые и векторные слои; растровая привязка, создание и редактирование растровой графики; встроенный векторный редактор; библиотеки растровой, векторной и гибридной графики; интерактивная и автоматическая векторизация; распознавание текста; экспорт и импорт векторных данных; библиотеки гибридной графики; Color Image Processor для расслаивания цветных изображений; поддержка TWAIN сканеров и многое другое | |
Vectory 5.1 | фильтрация растра; объектные методы растрового выбора; растровые и векторные слои; инструменты создания и редактирования как растровых, так и векторных объектов; автоматическая векторизация; распознавание текста; экспорт-импорт векторных данных; поддержка TWAIN сканеров | |
RasterDesk Pro 2000 / RasterDesk 2000 | фильтрация и калибровка растра; объектные методы растрового выбора; инструменты редактирования растровых данных; автоматическая векторизация и трассировка; возможность распознавания текста; Color Image Processor для расслаивания цветных изображений; поддержка TWAIN сканеров; поддержка MDI-интерфейса, толщины линий для всех векторных объектов; инструмент для коррекции векторных схем и чертежей, полученных в результате автоматической векторизации | |
Color Processor 2.1 | фильтрация растра, калибровка растра, расслоение изображений на монохромные слои, уменьшение количества цветов изображения |
10. Обратно к карандашу
Очень часто компьютерное проектирование выполняется по отсканированному ручному наброску или эскизу. А все проектирование представляет собой «смесь» бумаги и компьютерных данных, поэтому сейчас предпринимается много попыток интегрировать в САПР эскизирование.
Появившийся пакет Nemetschek D-Board - это достаточно эффективное средство эскизного проектирования и наброска. Комплект включает в себя плоский монитор с сенсорным экраном, чувствительным к давлению, специальный карандаш и программное обеспечение Р1ап2, включающее в себя мощный пакет 2D-CAD и программу эскизирования от руки.
Мультиперья позволяют объединять столько перьев, сколько необходимо для создания сложных компонентов. Выбрав перо, можно конвертировать простые линии в мультивидовые элементы. Режим работы пером в САПР освобождает пользователя от выбора элементов и щелчков кнопкой мыши: при указании объекта все изменяемые параметры отображаются автоматически.
11. PLM-системы
11.1 Жизненный цикл продукта (изделия)
Под жизненным циклом продукта (изделия) подразумевается весь период его существования - от начальной идеи до снятия с производства и прекращения сервисной поддержки. Основные этапы жизненного цикла любого продукта:
1. Анализ требований рынка. Осознание и понимание того, насколько востребован рынком новый продукт.
2. Выработка концепции проекта. На основе анализа требований рынка формируется общая идея нового продукта.
3. Проектирование. Создается проект новой продукции.
4. Определение источников поставок. Поиск источников приобретения необходимых для производства деталей, материалов, компонентов, оборудования и т. д.
5. Производство. В соответствии с определенными на этапе проектирования спецификациями и с использованием полученных на этапе поставок деталей и материалов производится продукт.
6. Дистрибуция. Готовый продукт поставляется либо дистрибутору, либо непосредственно заказчику.
7. Послепродажное обслуживание. Выполняются техническое сопровождение, обслуживание и ремонт - в течение гарантийного срока или как дополнительно оплачиваемый сервис.
11.2 Product Lifecycle Management
В современных условиях, кроме требований к качеству выпускаемой продукции, добавляется еще и необходимость сокращения времени выхода ее на рынок при одновременном удовлетворении индивидуальных потребностей клиентов (как ни как провозглашена эпоха Потребителя).
Сегодня для крупных производителей «виртуальное предприятие» - уже настоящая реальностью. Они сосредотачиваются на выработке концепции и проектирования продукции, а все остальное: от разработки до сборки - передают в аутсорсинг другим предприятиям. Но для контроля и интеграции всех процессов необходимы технологии, объединяющие и автоматизирующие все этапы жизненного цикла продукта.
К числу таких технологий относится PLM (Product Lifecycle Management - управление жизненным циклом продукта). PLM - это набор программных компонентов обеспечения коммуникаций, интеграции модулей автоматизированного проектирования и визуализации, а также других решений, охватывающих полный жизненный цикл продукта. Решения класса PLM призваны объединить всех участников, обеспечивающих жизненный цикл как внутри предприятия-производителя, так и вне его, в том числе поставщиков, клиентов и сервисных центров.
Хранилище PLM позволяет производителю сохранить опыт, накопленный на предыдущих проектах, значительно упростить контроль за актуальностью информации, идентифицировать ошибки и избежать перепроектирования (по оценкам компании Aberdeen, не менее 70 % затрат на производство и сопровождение продукции приходится на этап проектирования).
PLM-система способна предоставить пользователю информацию в форме, соответствующей выполняемым функциям в жизненном цикле создаваемого продукта: трехмерные модели, схематические диаграммы, инженерные спецификации, календарные планы или прогнозы на основе анализа требований рынка. Конструктор будет работать в привычной ему среде САПР, а сотрудник маркетингового подразделения сможет получить из системы представление трехмерной сборки, пригодное для размещения в рекламных материалах.
С помощью информации, которую интегрирует PLM-система, даже не обладая специальными техническими знаниями сотрудники отдела закупок смогут выполнять поиск нужных деталей и выбирать оптимальные каналы поставки по сведениям, поступающим из конструкторских подразделений.
Знания о том, какие проблемы вызывает техническое сопровождение готовой продукции, ее гарантийное или послегарантийное обслуживание, могут серьезно повлиять на последующие проекты компании. Если производитель имеет возможность получить такие данные, проанализировать их и реализовать в следующих проектах те характеристики, которые позволят избежать аналогичных проблем для нового изделия, то он не только сэкономит на послепродажном обслуживании, а сделает продукт, который лучше удовлетворит запросы требовательных клиентов.
С помощью PLM клиенты получают возможность представлять свои требования по улучшению продукта или связанные с ремонтом претензии, которые будут непосредственно учтены конструкторами при проектировании следующей версии продукции.
Таким образом, технология PLM обеспечивает стратегический подход к бизнесу, предлагающий непрерывный набор бизнес-решений, который поддерживает коллективный режим создания, управления, распределения и использования продуктов. Кроме того, PLM поддерживает «расширенное представление о предприятии» среди клиентов и партнеров, способствует интеграции людей, процессов, систем и информации.
11.3 New PLM
Системы PLM появились примерно 20 лет назад, но вскоре возникла необходимость отделить автоматизацию процессов проектирования и подготовки производства (CAD/САМ) от управления информацией, сопровождающей изделия. Тогда появилось самостоятельное от CAD/САМ направление Product Data Management (PDM), т. е. управление данными о продуктах, которое было связано с документооборотом конструкторской и технологической документации. Программное обеспечение PDM применялось на уровне конструкторских и технологических подразделений, не выходя на корпоративный уровень. Сегодня ситуация изменяется и данные PLM-систем требуются всему топ-менеджменту предприятия, a new PLM можно разделить на три взаимосвязанных составляющие управления жизненным циклом:
- жизненный цикл определения изделий (интеллектуальные активы предприятия);
- жизненный цикл производства (материальные активы предприятия);
- жизненный цикл операционной поддержки.
Эти циклы представляются тремя спиралями. Первичным является жизненный цикл управления интеллектуальными активами, который начинается с оценки пользовательских требований, выработки концепции продукта, а завершается, когда предприятие полностью отказывается от продукта, в том числе и от его сервисной поддержки. За ним следует второй цикл - производственный, который включает все, что связано с выпуском и распределением готовой продукции. Основными приложениями, реализующими функции этого цикла, являются системы управления ресурсами предприятия (ERP). И, наконец, внешний, операционный цикл поддерживают системы управления финансами, кадрами, взаимоотношениями с клиентами и др. (CRM, SCM и др.).
Исходя из этого, просматриваются основные составляющие концепции new PLM. Это возможность универсального, безопасного и управляемого доступа и использования информации о продукте, обеспечение ее целостности на протяжении всего жизненного цикла, а также управление соответствующими бизнес-процессами.
Преимущества PLM-систем:
- экономия затрат на разработку и быстрый вывод новой продукции на рынок (например, использование PLM-системы ENOVIA в одном из проектов позволило сэкономить $1 млрд., а цикл вывода нового продукта на рынок сократился с 72 до 16 недель);
Информация о работе Системы автоматизированного проектирования и PLM-системы