Автор работы: Пользователь скрыл имя, 12 Января 2012 в 16:32, реферат
Системой счисления называется совокупность правил для обозначения (записи) действительных чисел с помощью цифровых знаков. Для записи чисел в конкретных системах счисления используется некоторый конечный алфавит, состоящий из цифр а1 , а2, а3,….,аn. При этом каждой цифре аi в записи числа ставится в соответствие определенный количественный эквивалент. Различают непозиционные и позиционные системы счисления.
ВВЕДЕНИЕ 4
1 СИСТЕМЫ СЧИСЛЕНИЯ 6
1.1. Десятичная система счисления 6
1.2. Двоичная система счисления 6
1.3. Восьмеричная система счисления 7
1.4. Шестнадцатеричная система счисления 7
1.5 Перевод из одной системы счисления в другую 8
2 СОЗДАНИЕ БАЗЫ ДАННЫХ 11
СПИСОК ИСТОЧНИКОВ ИНФОРМАЦИИ 16
СОДЕРЖАНИЕ
Непозиционные
и позиционные системы
Системой счисления называется совокупность правил для обозначения (записи) действительных чисел с помощью цифровых знаков. Для записи чисел в конкретных системах счисления используется некоторый конечный алфавит, состоящий из цифр а1 , а2, а3,….,аn. При этом каждой цифре аi в записи числа ставится в соответствие определенный количественный эквивалент. Различают непозиционные и позиционные системы счисления.
Непозиционные системы счисления
В ней количественный эквивалент каждой цифры, входящей в запись данного числа, не зависит от места (позиции) этой цифры в ряду других цифр. Пример: римская система счисления. В ней для записи различных целых чисел используются символы I, V, X, L, C, D, M и т.д., обозначающие соответственно 1, 5, 10, 50, 100, 500, 1000 и т.д. Например, запись MCMLXXXV означает число 1985. Общим недостатком непозиционных систем является сложность представления в них достаточно больших чисел, так как при этом получается чрезвычайно громоздкая запись чисел или требуется очень большой алфавит используемых цифр. В ЭВМ применяют только позиционные системы счисления, в которых количественный эквивалент каждой цифры алфавита зависит не только от вида этой цифры, но и от ее местоположения в записи числа.
Позиционные системы счисления
В позиционных системах счисления вес каждой цифры изменяется в зависимости от ее позиции в последовательности цифр, изображающих число. Любая позиционная система характеризуется своим основанием. Основание позиционной системы счисления - это количество различных знаков или символов, используемых для изображения цифр в данной системе. За основание можно принять любое натуральное число - два, три, четыре, шестнадцать и т.д. Следовательно, возможно бесконечное множество позиционных систем.
Пришла в Европу из Индии, где она появилась не позднее VI века н.э. В этой системе 10 цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, но информацию несет не только цифра, но и место, на котором цифра стоит (то есть ее позиция). В десятичной системе счисления особую роль играют число 10 и его степени: 10, 100, 1000 и т.д. Самая правая цифра числа показывает число единиц, вторая справа - число десятков, следующая - число сотен и т.д. Позиции цифр в записи числа называют его разрядами. В десятичной системе счисления вес каждого разряда в 10 раз больше веса предыдущего. Всякое число в десятичной системе счисления можно представить в виде суммы различных целых степеней десяти с соответствующими коэффициентами аi (0-9), взятыми из алфавита данной системы счисления. Например: 245,83 = 2 * 102 + 4 * 101 + 5 * 100 + 8 * 10-1 + 3 * 10-2. Любое десятичное позиционное число N можно представить с помощью целых степеней десяти, взятых с соответствующими коэффициентами, т.е.
N10 = am * 10m + am-1 * 10m-1 + …+ a1*10+ +a0 * 100 + a-1 * 10-1 +…+ a-n * 10-n.
В этой системе всего две цифры - 0 и 1. Особую роль здесь играет число 2 и его степени: 2, 4, 8 и т.д. Самая правая цифра числа показывает число единиц, следующая цифра - число двоек, следующая - число четверок и т.д. Двоичная система счисления позволяет закодировать любое натуральное число - представить его в виде последовательности нулей и единиц. В двоичном виде можно представлять не только числа, но и любую другую информацию: тексты, картинки, фильмы и аудиозаписи. Инженеров двоичное кодирование привлекает тем, что легко реализуется технически. Наиболее простыми с точки зрения технической реализации являются двухпозиционные элементы, например, электромагнитное реле, транзисторный ключ.
В этой системе счисления 8 цифр: 0, 1, 2, 3, 4, 5, 6, 7. Цифра 1, указанная в самом младшем разряде, означает - как и в десятичном числе - просто единицу. Та же цифра 1 в следующем разряде означает 8, в следующем 64 и т.д. Число 100 (восьмеричное) есть не что иное, как 64 (десятичное). Чтобы перевести в двоичную систему, например, число 611 (восьмеричное), надо заменить каждую цифру эквивалентной ей двоичной триадой (тройкой цифр). Легко догадаться, что для перевода многозначного двоичного числа в восьмиричную систему нужно разбить его на триады справа налево и заменить каждую триаду соответствующей восьмеричной цифрой.
Запись числа в восьмеричной системе счисления достаточно компактна, но еще компактнее она получается в шестнадцатеричной системе. В качестве первых 10 из 16 шестнадцатеричных цифр взяты привычные цифры 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, а вот в качестве остальных 6 цифр используют первые буквы латинского алфавита: A, B, C, D, E, F. Цифра 1, записанная в самом младшем разряде, означат просто единицу. Та же цифра 1 в следующем - 16 (десятичное), в следующем - 256 (десятичное) и т.д. Цифра F, указанная в самом младшем разряде, означает 15 (десятичное). Перевод из шестнадцатеричной системы в двоичную и обратно производится аналогично тому, как это делается для восьмеричной системы.
Перевод целых чисел
Для перевода целых чисел из одной системы счисления с основанием S в другую с основанием S1 надо это число последовательно делить на основание S1 новой системы счисления до тех пор, пока не получится частное меньше S1. Число в новой системе запишется в виде остатков деления, начиная с последнего. Это последнее частое дает цифру старшего разряда в новой системе счисления. Деление выполняют в исходной системе счисления. Например:
37710=1011110012
Перевод правильных дробей
Для перевода правильной дроби из одной системы счисления в другую необходимо эту дробь последовательно умножать на основание той системы , в которую она переводится, перемножаются только дробные части. Дробь в новой системе записывается в виде целых частей получающихся произведений, начиная с первого. Например:
0,6875 0,67510=0,10011
* 2
1,3750
* 2
0,7500
* 2
1,5000
* 2
1,0000
При переводе неправильных десятичных дробей необходимо пользуясь рассмотренными правилами выполнить отдельно перевод целой и дробной частей.
Правила перевода из системы счисления в систему счисления
Для перевода чисел из любой системы счисления в десятичную необходимо:
А) Старшую цифру исходного числа умножить на основание старой системы счисления и прибавить следующую цифру исходного числа
Б)Результат опять умножить на основание старой системы счисления и прибавить следующую цифру исходного числа
В) Процесс перевода заканчивается после прибавления последней самой младшей цифры исходного числа
Для перевода чисел из десятичной системы счисления в любую необходимо делить исходное число на основание новой системы счисления до тех пор пока последнее частное не станет меньше основания новой системы счисления. Результат складывается из остатков деления, начиная с последнего.
Для перевода чисел из любой системы счисления в любую необходимо исходное число перевести в десятичную систему по первому правилу (умножением), полученное десятичное число перевести в искомую систему по второму правилу (деление).
Для перевода чисел из систем счисления, которые являются степенью двойки необходимо:
А) из 16-ричной в 2-ичную: для перевода 16-ричного числа в двоичную систему необходимо каждую цифру 16-ричного числа заменить 4-х разрядным двоичным значением.
Б)
из 8-ричной в 2-ичную: Каждую цифру 8-ричного
числа необходимо заменить 3-х разрядным
двоичным значением.
Представление чисел в различных системах счисления | |||
Системы счислений | |||
Десятичная | Двоичная | Восьмеричная | Шестнадцатиричная |
0 | 0 | 0 | 0 |
1 | 1 | 1 | 1 |
2 | 10 | 2 | 2 |
3 | 11 | 3 | 3 |
4 | 100 | 4 | 4 |
5 | 101 | 5 | 5 |
6 | 110 | 6 | 6 |
7 | 111 | 7 | 7 |
8 | 1000 | 10 | 8 |
9 | 1001 | 11 | 9 |
10 | 1010 | 12 | А |
11 | 1011 | 13 | В |
12 | 1100 | 14 | С |
13 | 1101 | 15 | D |
14 | 1110 | 16 | E |
15 | 1111 | 17 | F |
Ехсеl можно использовать для решения простых задач учета, составления различных бланков, деловой графики и даже полного баланса Фирмы. С помощью Ехсе1 можно облегчать решение таких задач, как обработка заказов и планирование производства, расчет налогов и заработной платы, учет кадров и издержек управление сбытом и имуществом и многих других. Широкое распространение программ обработки электронных таблиц во многом объясняется универсальными возможностями их применения, поскольку без вычислений, в широком смысле этого слова, не обойтись в самых различных сферах нашей жизни.
Область применения программы не ограничивается только сферой деловой жизни. Благодаря мощным математическим и инженерным функциям с помощью Ехсеl можно решить множество задач также в области естественных и технических наук.
Необходимо создать базу данных в Excel для организации учета в таксопарке машин. Необходимо вести строгий ежедневный учет за автомобилями, выезжающими по вызовам и находящимися на маршрутах, иметь возможность распечатать информацию по каждой машине.
В верхней строке следует указать заголовки столбцов: «№», «Фамилия водителя», «Марка автомобиля», Номер маршрута» и «Время выезда на маршрут», а затем внести данные в ячейки таблицы (рисунок 1).
Рисунок
1 – База данных таксопарка
Для сортировки базы по каким – либо параметрам необходимо применить «Фильтр» (вкладка Данные, рисунок 2)
Рисунок 2 – Применение фильтра
Теперь можно произвести сортировку базы данных (рисунок3, 4, 5).
Рисунок
3 – Сортировка по марке автомобиля
ВАЗ 2107
Рисунок 4 – Сортировка водителей по фамилии Иванов
Рисунок 4 – Сортировка водителей не выехавших на маршрут