Сравнительный анализ сетевого оборудования канального уровня модели OSI на основе сетей пакетной коммутации

Автор работы: Пользователь скрыл имя, 15 Апреля 2012 в 14:08, курсовая работа

Описание

Целью данной курсовой работы является изучение процесса преобразования различного рода трафика физического уровня модели OSI в пакеты канального уровня для дальнейшей передачи по сетям ПД. Для достижения данной цели необходимо выполнить следующие задачи:
1. Рассмотреть все виды сетевого трафика в соответствии со службами ТКС.
2. Выявить свойства нагрузки в виде вызовов, сообщений и сигналов, при взаимодействии сетевых терминалов на канальном уровне модели OSI.

Содержание

1 Обзор модели OSI
1.1 Характеристики уровней модели OSI
1.2 Протоколы
1.3 Модель OSI и связь между системами
1.4 Службы уровня модели OSI
1.5 Информационные форматы
2 Канальный уровень
2.1 Передача данных на канальном уровне
2.2 Методы передачи данных канального уровня
2.2.1 Аналоговая модуляция
2.2.2 Цифровое кодирование
2.3 Методы коммутации
3 Сравнение интерфейсов канального уровня разных центров коммутации
3.1 Интерфейс центров коммутации каналов
3.2 Интерфейс центров коммутации пакетов
3.3 Интерфейс центра коммутации сообщений
Заключение

Работа состоит из  1 файл

курсовая.doc

— 475.50 Кб (Скачать документ)

Сети с коммутацией пакетов сравнительно молоды, они появились в конце 60-х годов как результат экспериментов с первыми глобальными компьютерными сетями. Коммутация пакетов - это техника коммутации абонентов, которая была специально разработана для эффективной передачи компьютерного трафика. Эксперименты по созданию первых компьютерных сетей на основе техники коммутации каналов показали, что этот вид коммутации не позволяет достичь высокой общей пропускной способности сети. Суть проблемы заключается в пульсирующем характере трафика, который генерируют типичные сетевые приложения

Сети с коммутацией сообщений послужили прототипом современных сетей с коммутацией пакетов и сегодня они в чистом виде практически не существуют. Метод коммутации сообщений, относится к логическим видам коммутации.

Метод коммутации сообщений используется для передачи данных, не требующих высокой оперативности их обработки.

В телекоммуникационных сетях метод коммутации сообщений начал использоваться раньше, чем метод коммутации пакетов. Однако, в настоящее время вытесняется последним, как более эффективным по критерию пропускной способности сети, и самостоятельно практически не используется.              

Рис. 7 - Общая структура сети с коммутацией абонентов

 

Каждая из этих схем имеет свои преимущества и недостатки, но по долгосрочным прогнозам многих специалистов будущее принадлежит технологии коммутации пакетов, как более гибкой и универсальной.

 

 

 

 

3 Сравнение интерфейсов канального уровня разных центров коммутации

3.1 Интерфейс центров коммутации каналов

При коммутации каналов устанавливается физическое соединение между передающим и принимающим устройствами. Примером является соединение в телефонной сети ТФ-ОП или сети ISDN. Соединение, установленное в сети с коммутацией каналов, сохраняется до конца сеанса связи, независимо от того, ведется передача информации или нет, и разрушается по инициативе одного из оконечных устройств. Достоинствами такого метода коммутации является его простота и отсутствие задержек при передаче информации после установления соединения. К недостаткам можно отнести неэффективное использование пропускной способности канала из-за наличия временных пауз в информационном потоке между оконечными устройствами и возможные отказы сети на запрос установления соединения. При строительстве современных высокоскоростных сетей такая коммутация практически не применяется.

Сегодня для построения глобальных связей в корпоративной сети доступны сети с коммутацией каналов двух типов - традиционные аналоговые телефонные сети и цифровые сети с интеграцией услуг ISDN.

Эта технология содержит ряд принципиальных особенностей и предоставляет пользователю ISDN-терминала следующие преимущества: наличие жидкокристаллического дисплея и расширенной телефонной клавиатуры для интерактивного управления вызовами и обмена сообщениями, практически мгновенное установление связи (в течение миллисекунд), возможность одновременного установления и удержания линии связи с тремя абонентами, возможность обмена текстовыми и речевыми сообщениями, возможность регулирования громкости принимаемой речи, повышенное качество звучания и многое другое.

К числу основных средств ISDN можно отнести:

1.            ISDN-станции (ISDN-коммутаторы);

2.            ISDN-терминалы (цифровые телефонные аппараты);

3.            внутренние адаптеры ISDN (мосты/маршрутизаторы) для подключения ПК к ISDN-сети;

4.            внешние устройства (блоки) для подключения ПК или ЛВС к ISDN-сети как альтернатива адаптерам;

5.            блоки Network Terminator;

6.            линии связи (интерфейсы PRI и BRI).

В ISDN-сетях используются два специфических типа интерфейсов: интерфейс базового уровня BRI (Basic Rate Interface), регламентирующий соединение ISDN-станции с абонентом, и интерфейс первичного уровня PRI (Primary Rate Interface), обеспечивающий связь между ISDN-станциями. Логически BRI представляет собой особым образом структурированный цифровой поток, разделенный на три канала: два информационных канала типа В с пропускной способностью 64 Кбит/с каждый и один служебный канал типа D с пропускной способностью 16 Кбит/с. Именно поэтому BRI имеет еще одно наименование - 2В+D.

Физически BRI реализуется либо в виде U-интерфейса, либо в виде S/T-интерфейса. U-интерфейс предназначен для работы с удаленными пользователями (до 4-7 километров) и представляет собой витую пару.

Функционирование U-интерфейса основано на использовании дуплексного режима (full-duplex), т.е. передачи потока по линии связи в обоих направлениях одновременно. Посредством же S/T-интерфейса осуществляется разводка внутри офиса компании либо квартиры с помощью двухпарного кабеля; при этом обеспечивается параллельное подключение до восьми устройств.

ISDN-станции, в которые стекаются BRI-интерфейсы, соединяются между собой широкополосными магистралями, поддерживающими интерфейс первичного уровня PRI. Логически PRI построен по тому же принципу, что и BRI-интерфейс: определенное количество В-каналов и один D-канал. Иными словами, PRI можно представить в виде формулы nB+D. При этом следует помнить, что D-каналы в PRI и BRI отличаются пропускной способностью: если в BRI быстродействие D-канала равно 16 Кбит/с, то в PRI - 64 Кбит/с.

Известным недостатком аналоговых телефонных сетей является низкое качество составного канала, которое объясняется использованием телефонных коммутаторов устаревших моделей, работающих по принципу частотного уплотнения каналов (FDM-технологии). На такие коммутаторы сильно воздействуют внешние помехи (например, грозовые разряды или работающие электродвигатели), которые трудно отличить от полезного сигнала.

Выделенные аналоговые каналы предоставляются пользователю с 4-проводным или 2-проводным окончанием. На каналах с 4-проводным окончанием организация полнодуплексной связи, естественно, выполняется более простыми способами.

Выделенные линии могут быть разделены на две группы по другому признаку - наличию промежуточной аппаратуры коммутации и усиления или ее отсутствию.

Первую группу составляют так называемые нагруженные линии, проходящие через оборудование частотного уплотнения (FDM-коммутаторы и мультиплексоры), расположенное, например, на АТС. Телефонные компании обычно предоставляют в аренду два типа выделенных каналов: канал тональной частоты с полосой пропускания 3,1 кГц и широкополосный канал с полосой 48 кГц, который представляет собой базовую группу из 12 каналов тональной частоты. Широкополосный канал имеет границы полосы пропускания от 60 до 108 кГц. Так как широкополосный канал используется для связи АТС между собой, то получение его в аренду более проблематично, чем канала тональной частоты.

Вторая группа выделенных линий - это ненагруженные физические проводные линии. Они могут кроссироваться, но при этом не проходят через аппаратуру частотного уплотнения. Часто такие линии используются для связи между близко стоящими зданиями. При небольшой длине ненагруженной выделенной линии она обладает достаточно широкой полосой пропускания, иногда до 1 МГц, что позволяет передавать импульсные немодулированные сигналы.

 

3.2 Интерфейс центров коммутации пакетов

В 80-е годы для надежного объединения локальных сетей и крупных компьютеров в корпоративную сеть использовалась практически одна технология глобальных сетей с коммутацией пакетов - Х.25. Сегодня выбор стал гораздо шире, помимо сетей Х.25 он включает такие технологии, как frame relay, SMDS и АТМ.

Для глобальных сетей с коммутацией пакетов, таких как Х.25, frame relay или АТМ, характерна оригинальная техника маршрутизации пакетов. Эта техника основана на понятии «виртуальный канал» и обеспечивает эффективную передачу долговременных устойчивых потоков данных.

Техника виртуальных каналов, используемая во всех территориальных сетях с коммутацией пакетов, кроме TCP/IP, состоит в следующем: прежде чем пакет будет передан через сеть, необходимо установить виртуальное соединение между абонентами сети - терминалами, маршрутизаторами или компьютерами. Существуют два типа виртуальных соединений - коммутируемый виртуальный канал (Switched Virtual Circuit, SVC) и постоянный виртуальный канал (Permanent Virtual Circuit, PVC). При создании коммутируемого виртуального канала коммутаторы сети настраиваются на передачу пакетов динамически, по запросу абонента, а создание постоянного виртуального канала происходит заранее, причем коммутаторы настраиваются вручную администратором сети, возможно, с привлечением централизованной системы управления сетью.

Сети Х.25 являются на сегодняшний день самыми распространенными сетями с коммутацией пакетов, используемыми для построения корпоративных сетей. Кроме того, сети Х.25 хорошо работают на ненадежных линиях благодаря протоколам с установлением соединения и коррекцией ошибок на двух уровнях - канальном и сетевом.

Компьютеры и локальные сети обычно подключаются к сети Х.25 непосредственно через адаптер Х.25 или маршрутизатор, поддерживающий на своих интерфейсах протоколы Х.25.

На канальном уровне обычно используется протокол LAP-B. Этот протокол обеспечивает сбалансированный режим работы, то есть оба узла, участвующих в соединении, равноправны. По протоколу LAP-B устанавливается соединение между пользовательским оборудованием DTE (компьютером, IP- или IPX-маршрутизатором) и коммутатором сети. Хотя стандарт это и не оговаривает, но по протоколу LAP-B возможно также установление соединения на канальном уровне внутри сети между непосредственно связанными коммутаторами. Кадр LAP-B содержит одно однобайтовое адресное поле (а не два - DSAP и SSAP), в котором указывается не адрес службы верхнего уровня, а направление передачи кадра. Поддерживается как нормальный режим (с максимальным окном в 8 кадров и однобайтовым полем управления), так и расширенный режим (с максимальным окном в 128 кадров и двухбайтовым полем управления).

Сети frame relay - сравнительно новые сети, которые гораздо лучше подходят для передачи пульсирующего трафика локальных сетей по сравнению с сетями Х.25, правда, это преимущество проявляется только тогда, когда каналы связи приближаются по качеству к каналам локальных сетей, а для глобальных каналов такое качество обычно достижимо только при использовании волоконно-оптических кабелей.

Сети frame relay специально разрабатывались как общественные сети для соединения частных локальных сетей. Они обеспечивают скорость передачи данных до 2 Мбит/с.

Протокол канального уровня LAP-F в сетях frame relay имеет два режима работы - основной (core) и управляющий (control). В основном режиме, который фактически практикуется в сегодняшних сетях frame relay, кадры передаются без преобразования и контроля, как и в коммутаторах локальных сетей. За счет этого сети frame relay обладают весьма высокой производительностью, так как кадры в коммутаторах не подвергаются преобразованию, а сеть не передает квитанции подтверждения между коммутаторами на каждый пользовательский кадр, как это происходит в сети Х.25. Пульсации трафика передаются сетью frame relay достаточно быстро и без больших задержек.

Сеть АТМ имеет классическую структуру крупной территориальной сети - конечные станции соединяются индивидуальными каналами с коммутаторами нижнего уровня, которые в свою очередь соединяются с коммутаторами более высоких уровней. Коммутаторы АТМ пользуются 20-байтными адресами конечных узлов для маршрутизации трафика на основе техники виртуальных каналов.

Протокол АТМ занимает в стеке протоколов АТМ примерно то же место, что протокол IP в стеке TCP/IP или протокол LAP-F в стеке протоколов технологии frame relay. Протокол АТМ занимается передачей ячеек через коммутаторы при установленном и настроенном виртуальном соединении, то есть на основании готовых таблиц коммутации портов. Протокол АТМ выполняет коммутацию по номеру виртуального соединения, который в технологии АТМ разбит на две части - идентификатор виртуального пути (Virtual Path Identifier, VPI) и идентификатор виртуального канала (Virtual Channel Identifier, VCI). Кроме этой основной задачи протокол АТМ выполняет ряд функций по контролю за соблюдением трафик - контракта со стороны пользователя сети, маркировке ячеек-нарушителей, отбрасыванию ячеек-нарушителей при перегрузке сети, а также управлению потоком ячеек для повышения производительности сети (естественно, при соблюдении условий трафик - контракта для всех виртуальных соединений).

 

3.3 Интерфейс центра коммутации сообщений

Коммутацией сообщений называется совокупность операций по приему узлом сети от оконечного устройства или другого узла целого сообщения (файла, блока данных), хранению принятого сообщения в памяти узла и последующей передачи в соответствии с содержащимся в нем адресом. Таким образом, сообщение поэтапно, с переприемом в каждом узле, передается через ряд узлов в пункт назначения. Передающая станция (источник) снабжает сообщение адресом получателя (Destination Address, DA) и собственным адресом (Source Address, SA). Разные сообщения между отправителем и получателем (А и М) могут проходить в сети разными путями.

Примером реализации данного метода коммутации может служить телеграфная сеть. В компьютерных сетях в чистом виде этот вид коммутации не применяется, хотя сама идея “store and forward” (запомни и отправь) используется в системах передачи почты (MHS-message handle systems).

Узлы сети с коммутацией сообщений должны иметь буферную память неопределенного размера и большое дисковое пространство для временного хранения данных. Возникают сложности при работе в режиме реального времени из-за непредсказуемых и больших задержек сообщения в сети. К достоинствам такого метода коммутации можно отнести более эффективное, чем при коммутации каналов, использование каналов сети (сообщения передаются по очереди, использование каналов достигает 95% - 98%), широкие возможности по управлению трафиком, возможность отправить одно сообщение многим (broadcast messages).

В коммутации сообщений применяется технология ADSL.

ADSL (Asymmetric Digital Subscriber Line — Асимметричная цифровая абонентская линия) входит в число технологий высокоскоростной передачи данных, известных как технологии DSL (Digital Subscriber Line — Цифровая абонентская линия) и имеющих общее обозначение xDSL.

Информация о работе Сравнительный анализ сетевого оборудования канального уровня модели OSI на основе сетей пакетной коммутации