Автор работы: Пользователь скрыл имя, 11 Мая 2013 в 01:20, реферат
Судя по структуре русских числительных, счёт в России издавна вёлся десятками и сотнями: три+на+дцать, шесть+десят, четыре+ста. Вместе с кириллицей появился и греческий обычай обозначать цифры помеченными специальным значком буквами; использовались буквы, аналогичные греческим, а специфически-славянские (Б, Ж, Ш и др.) числовых значений не получили.
1 Древность и средневековье
2 XVII век
3 Петровские реформы, XVIII век
4 XIX век
5 Советский период
6 Примечания
7 Литература
8 Ссылки
История математики в России
Содержание
1 Древность и средневековье
2 XVII век
3 Петровские реформы, XVIII век
4 XIX век
5 Советский период
6 Примечания
7 Литература
8 Ссылки
1.Древность и средневековье
Судя по структуре русских
Тьма (десять тысяч)
Легион, или неведий (сто тысяч)
Леодр (миллион)
Для ещё бо́льших чисел была предусмотрена особая система записи «великий счёт». Славянская нумерация использовалась в России до XVIII века, после чего всюду, за исключением церковной литературы, была заменена на современную.
Впервые в русской литературе математические сведения появляются в юридическом сборнике «Русская правда» (XI век), где приведен ряд расчётных примеров (долги, штрафы, проценты и т. п.).[1]
В 1136 году новгородский монах Кирик
написал математико-
После монгольского нашествия (XIII век)
научное развитие России затормозилось.
Конфликты с католическими
Единственной задачей, выходящей за рамки хозяйственных потребностей, был расчёт даты православной Пасхи, требующий незаурядных познаний в астрономии и математике. В XV веке пришлось решать сложную церковно-государственную проблему: ранее составленные в 1352 году (при Василии Калике, архиепископе Новгородском) пасхальные таблицы на 1360—1492 годы заканчивались, и во всей Руси не нашлось человека, способного произвести нужные расчеты, а Византии более не существовало. Пришлось организовать специальную делегацию, возглавленную образованным новгородским архиепископом Геннадием Гонзовым, которая отправилась в Рим за консультациями. Вояж закончился успешно, делегаты привезли таблицы пасхалий на 70 лет вперед и методику её составления[4]. Позже, в 1539 году, при архиепископе Новгородском Макарии, была составлена пасхалия на следующую тысячу лет.
2.XVII век
В XVI—XVII веках государство укрепилось, и положение стало меняться. Потребности экономики и армии, особенно артиллерии, настоятельно требовали повысить уровень образования, в том числе математического. В Москве стали селиться приглашённые иностранные специалисты, были переведены на русский популярные западные руководства по прикладным наукам и математике — в первую очередь арифметике и геометрии. Правда, не всегда эти руководства были надлежащего качества. Чудом уцелевший «Устав ратных дел» начала XVII века содержит несколько задач триангуляции на местности, изложенных довольно смутно. Другое дошедшее до нас с тех времён руководство, «Книга сошного письма», посвящена задачам землемерия. Многие приведенные в ней правила вычисления площадей содержат грубые ошибки. Например. чтобы вычислить площадь треугольника, предписывается умножить половину меньшей стороны на бо́льшую; вероятно, треугольник считался прямоугольным, а бо́льшая сторона подразумевала больший из катетов. При вычислении объёма цилиндра предполагалось, что π = 3[5].
К этому периоду в некоторых областях математики уже сложилась русская терминология: считание (сложение), вычитание, перечни (слагаемые) и др. Недостающие термины заменяются кальками с латинского (радикс — корень). Славянская нумерация начинает вытесняться десятичной записью с индо-арабскими цифрами.
Первая высшая школа — духовная академия — открылась в Киеве (тогда ещё польском) в начале XVII века. Спустя полвека и в Москве появилась Славяно-греко-латинская академия (1687). В ней учились Л. Ф. Магницкий, М. В. Ломоносов и другие научные пионеры России. Впрочем, математику в Москве поначалу не преподавали, а в Киеве ограничивались начальными сведениями. Проживавший в Москве Юрий Крижанич писал в своей книге «Разговоры о владетельстве»: «Купцы не учатся даже арифметике, и иноземцы во всякое время беспощадно их обманывают»[6]..
Ко времени петровских реформ Россия
располагала рукописными
3.Петровские реформы, XVIII век
С началом книгопечатания в России
стали выпускаться и
Титульный и первый листы «Арифметики» Магницкого
В 1701 году императорским указом была учреждена в Сухаревой башне математически-навигацкая школа, где преподавал Л. Ф. Магницкий. По поручению Петра I он написал (на церковно-славянском) известный учебник арифметики (1703), а позже издавал навигационные и логарифмические таблицы. В отличие от вышеописанных предшественников, учебник Магницкого для того времени был исключительно добротным и содержательным. Автор тщательно отобрал всё лучшее, что было в существовавших тогда учебниках, и изложил материал ясно, с многочисленными примерами и пояснениями, с красочными иллюстрациями. Несколько поколений в России обучались математике по этой книге; М. В. Ломоносов цитировал её наизусть и называл «вратами учёности»[11].
Кроме собственно арифметики, учебник Магницкого содержал материал по алгебре (почему-то в устаревшей символике Виета), геометрии, тригонометрии, метеорологии, астрономии и навигации. Впервые на русском языке появились квадратные и биквадратные уравнения, прогрессии, тригонометрические функции и многое другое. Хотя в книге использовались только арабские цифры, однако её листы пронумерованы ещё по старой славянской системе.
В 1715 году навигацкая школа была переименована в Морскую академию и переведена в Петербург. Одновременно Пётр распорядился разослать в губернии по два выпускника этой школы, освоивших геометрию и географию, с целью создать там школы «для науки молодых ребяток из всяких чинов людей». Эти школы получили название цифирных, так как особое внимание в них уделяли счёту, а также геометрии. Любопытно, что зачастую простые горожане охотнее отдавали детей в обучение, чем дворяне. Для духовенства, по традиции наследственного, были организованы отдельные епархиальные школы, а в армии — гарнизонные. Привычным стимулом обучения повсюду была розга[12]. Все эти меры привели к тому, что число образованных людей в России стало быстро расти.
Высшая математика поначалу не вызвала в России интереса, даже Ломоносов ею не владел. Но положение вскоре изменилось и здесь. В 1725 году была учреждена Петербургская академия наук, куда пригласили, в числе прочих, крупнейших математиков Европы — Эйлера и Даниила Бернулли. Первое время профессоров было больше, чем студентов, и они читали лекции друг другу[13].
Присутствие в Академии такого научного колосса, как Эйлер, сказалось быстро. Появился первый русский научный журнал: «Комментарии Санкт-Петербургской Академии». Начали выходить в свет не только русские переводы европейских учебников и классических монографий, но и оригинальные труды. Эйлер вполне освоил русский язык и часть своих трудов, в первую очередь учебного характера, издавал на русском — в ряде случаев они выходили раньше, чем их варианты на латинском или немецком.
1755: по инициативе Ломоносова
появился Императорский
Первыми академиками-математиками России стали С. К. Котельников, В. И. Висковатов и С. Е. Гурьев. Первые двое ничем особенным не прославились, кроме составления и перевода учебников, а также неустанного труда по подготовке научной смены. Гурьев опубликовал ряд значительных работ по прикладной математике и геометрии. Хотя научный уровень этих академиков ещё не достигал «европейских стандартов», но педагогами они были добросовестными, и следующее поколение российских учёных оправдало их надежды[14].
Итогом усилий по развитию российской математики в XVIII веке можно считать написанный Т. Ф. Осиповским (1801) содержательный «Курс математики» в 4 томах, выдержавший три издания.
4.XIX век
Мощным толчком к развитию российской науки послужили реформы М. М. Сперанского. В начале XIX в. было создано Министерство народного просвещения, возникли учебные округа, и гимназии стали открываться во всех крупных городах России. При этом содержание курса математики было довольно обширным — алгебра, тригонометрия, приложения к физике и др.
Начали открываться новые
В XIX веке молодая российская математика уже выдвинула учёных мирового уровня.
Первым из них стал Михаил Васильевич Остроградский. Как и большинство российских математиков до него, он разрабатывал преимущественно прикладные задачи анализа. В его работах исследуется распространение тепла, волновое уравнение, теория упругости, электромагнетизм. Занимался также теорией чисел. Академик пяти мировых академий. Важные прикладные работы выполнил Виктор Яковлевич Буняковский — чрезвычайно разносторонний математик, изобретатель, признанный авторитет по теории чисел и теории вероятностей, автор фундаментального труда «Основания математической теории вероятностей», основоположник российской демографии. Эти два математика дали начала «Петербургской математической школе», первое время занимавшейся в основном тремя областями — теорией чисел, математической физикой и теорией вероятностей[15].
Н. И. Лобачевский
Фундаментальными вопросами
Во второй половине XIX века российская математика, при общем прикладном уклоне, публикует и немало фундаментальных результатов. Несколько важных открытий общего характера сделала Софья Ковалевская.
Пафнутий Львович Чебышев
К концу XIX века, стараниями Н. Д. Брашмана и Н. В. Бугаева, формируется активная московская математическая школа. 15 сентября 1864 года начало свою работу Московское математическое общество, в следующем году вышел первый выпуск его печатного органа «Математический сборник» — первый математический журнал в России.
В Москве начинал свой путь Пафнутий Львович Чебышев, математик-универсал, который сделал множество открытий в самых разных, далёких друг от друга, областях математики — теории чисел, теории вероятностей, теории приближения функций и др. Ряд его учеников стали известными математиками; из них особенно известен А. А. Марков, давший первоклассные работы по теории вероятностей, теории чисел и математическому анализу.
В Петербурге в конце XIX — начале
XX века выходит на историческую сцену
новое поколение крупных
Д. А. Граве
А. Н. Крылов
А. М. Ляпунов
В. И. Смирнов
В. А. Стеклов, впоследствии вице-президент Академии наук СССР (1919—1926)
и другие.
Перед Октябрьской революцией математическая жизнь в Российской империи протекала чрезвычайно активно. Петербургская школа получила выдающиеся результаты в теории вероятностей (А. А. Марков, А. М. Ляпунов), теории устойчивости (А. М. Ляпунов), теории чисел (И. И. Иванов, Я. В. Успенский), математической физике (В. А. Стеклов, Н. М. Гюнтер), теории аналитических функций (Н. Я. Сонин, Ю. В. Сохоцкий) и других областях теоретической и прикладной математики. В Москве крупными достижениями прославились Д. Ф. Егоров, Н. Н. Лузин, С. А. Чаплыгин. Число математических обществ в стране увеличилось до 5.
5.Советский период
Модернизация страны, проводимая после Октябрьской революции, сопровождалась значительным расширением преподавания математики и исследований в этой области. В России появились новые университеты (Воронеж, Горький, Пермь, Свердловск, Ростов, Иркутск) и множество других научных и учебных заведений, разрабатывающих математические проблемы. Кадровый вопрос частично был решён за счёт дореволюционных специалистов, однако их не хватало, тем более что немало крупных математиков эмигрировало за границу: А. М. Островский, А. С. Безикович, позже Я. Д. Тамаркин и Я. В. Успенский[16]. Поэтому ускоренными темпами было подготовлено новое поколение российских математиков.
При Московском, Ленинградском, Казанском и Томском университетах были открыты Математические институты. С 1924 года советские математики участвовали в работе Международного конгресса математиков, их работы были удостоены нескольких высших наград в ходе этих конгрессов. В 1927 году в Москве состоялся Всероссийский (фактически — всесоюзный) съезд математиков, в котором участвовали 378 делегата со всех концов страны. В 1930 году, с 24 по 29 июня, в Харькове прошёл I Всесоюзный съезд математиков (471 представитель)[17]. Следующие съезды состоялись в 1934 году (Ленинград), 1956 (Москва), 1961 (Ленинград). В 1936 году начался выпуск журнала «Успехи математических наук».