Автор работы: Пользователь скрыл имя, 22 Февраля 2013 в 12:04, реферат
Известно, что натуральные числа возникли при счете предметов. Потребность человека измерять величины и то обстоятельство, что результат измерения не всегда выражается целым числом, привели к расширению множества натуральных чисел. Были введены нуль и дробные числа.
Процесс исторического развития понятия числа на этом не закончился. Однако не всегда первым толчком к расширению понятия числа были исключительно практические потребности людей. Было и так, что задачи самой математики требовали расширения понятия числа.
Известно, что натуральные числа возникли при счете предметов. Потребность человека измерять величины и то обстоятельство, что результат измерения не всегда выражается целым числом, привели к расширению множества натуральных чисел. Были введены нуль и дробные числа.
Процесс исторического развития понятия числа на этом не закончился. Однако не всегда первым толчком к расширению понятия числа были исключительно практические потребности людей. Было и так, что задачи самой математики требовали расширения понятия числа. Именно так обстояло дело с возникновением отрицательных чисел. Решение многих задач, особенно решаемых с помощью уравнений, приводило к вычитанию из меньшего числа большего. Это потребовало введения новых чисел.
Впервые отрицательные числа появились в Древнем Китае уже примерно 2100 лет тому назад. Там умели также складывать и вычитать положительные и отрицательные числа, правила умножения и деления не применялись.
Во II в. до н. э. китайский ученый Чжан Цань написал книгу «Арифметика в девяти главах». Из содержания книги видно, что это не вполне самостоятельный труд, а переработка других книг, написанных задолго до Чжан Цаня. В этой книге впервые в науке встречаются отрицательные количества. Они понимаются им не так, как понимаем и применяем их мы. Полного и ясного понимания природы отрицательных величин и правил действия с ними у него нет. Каждое отрицательное число он понимал как долг, а положительное – как имущество. Действия с отрицательными числами он производил не так, как мы, а используя рассуждения о долге. Например, если к одному долгу прибавить другой долг, то в результате получиться долг, а не имущество (т, е. по нашему (- х) + (- х) = - 2х. Знака минус тогда не знали, поэтому, чтобы отличить числа, выражавшие долг, Чжань Цань писал их другими чернилами, чем числа, выражавшие имущество (положительные).
Положительные количества в китайской математике называли «чен» и изображали красным цветом, а отрицательные – «фу» и изображали черным. Такой способ изображения использовался в Китае до середины XII столетия, пока Ли Е не предложил более удобное обозначение отрицательных чисел – цифры, которые изображали отрицательные числа, перечеркивали черточкой наискось справа налево. Хотя китайские ученые и объяснили отрицательные количества как долг, а положительные - как имущество, всё же они избегали широкого употребления их, так как числа эти казались непонятными, действия с ними были неясны. Если же задача приводила к отрицательному решению, то старались заменить условие (как греки), чтобы в итоге получалось решение положительное.
В V-VI столетиях отрицательные числа появляются и очень широко распространяются в индийской математике. Для вычислений математики того времени пользовались счетной доской, на которой числа изображались с помощью счетных палочек. Так как знаков + и – в то время еще не было, палочками красного цвета изображали положительные числа, отрицательные же - палочками черного цвета и называли «долг» и «недостача». Положительные числа толковались как «имущество». В отличие от Китая в Индии были уже известны и правила умножения, деления. В Индии отрицательные числа систематически использовали в основном так, как это мы делаем сейчас. Уже в произведении выдающегося индийского математика и астронома Брахмагупты (598 – около 660 гг.) мы читаем: «имущество и имущество есть имущество, сумма двух долгов есть долг; сумма имущества и нуля есть имущество; сумма двух нулей есть нуль… Долг, который отнимают от нуля, становится имуществом, а имущество – долгом. Если нужно отнять имущество от долга, а долг от имущества, то берут их сумму».
Отрицательными числами индийские математики пользовались при решении уравнений, причем вычитание заменяли добавлением с равнопротивоположным числом.
Вместе с отрицательными числами индийские математики ввели понятие ноль, что позволило им создать десятеричную систему исчисления. Но долгое время ноль не признавали числом, «nullus» по- латыни – никакой, отсутствие числа. И лишь через X веков, в XVII-ом столетии с введением системы координат ноль становится числом.
Греки тоже поначалу знаков не использовали. Древнегреческий ученый Диофант вообще не признавал отрицательные числа, и если при решении уравнения получался отрицательные корень, то он отбрасывал его как “недоступный”. И Диофант старался так сформулировать задачи и составлять уравнения, чтобы избежать отрицательных корней, но вскоре Диофант Александрийский стал обозначать вычитание знаком .
Несмотря на то, что отрицательные числа использовались давно, относились к ним с некоторым недоверием, считая их не совсем реальными, истолкование их как имущество-долг вызывало недоумение: как можно «складывать» и «вычитать» имущество и долги?
В Европе признание наступило на тысячу лет позже. К идее отрицательного количества достаточно близко подошел в начале XIII столетия Леонардо Пизанский (Фибоначчи), который тоже ввёл его для решения финансовых задач с долгами и пришел к мысли, что отрицательные количества надо принимать в смысле, противоположном положительным. В те годы были развиты так называемые математические поединки. На состязании в решении задач с придворными математиками Фридриха II Леонардо Пизанскому (Фибоначчи) было предложено решить задачу: требовалось найти капитал нескольких лиц. Фибоначчи получил отрицательное значение. «Этот случай, - сказал Фибоначчи, - невозможен, разве только принять, что один имел не капитал, а долг».
В 1202 году он впервые использовал отрицательные числа для подсчёта своих убытков. Однако, в явном виде отрицательные числа применил впервые в конце XV столетия французский математик Шюке.
Тем не менее до XVII века отрицательные числа были “в загоне” и долгое время их называли «ложными», «мнимыми» или «абсурдными». И даже в XVII веке знаменитый математик Блез Паскаль утверждал, что 0-4=0 ибо нет такого числа, которое может быть меньше ничего, а вплоть до XIX века математики часто отбрасывали в своих вычислениях отрицательные числа, считая их бессмысленными…
Бомбелли и Жирар, напротив, считали отрицательные числа вполне допустимыми и полезными, в частности, для обозначения недостачи чего-либо. Отголоском тех времён является то обстоятельство, что в современной арифметике операция вычитания и знак отрицательных чисел обозначаются одним и тем же символом (минус), хотя алгебраически это совершенно разные понятия.
В Италии ростовщики, давая деньги в долг, ставили перед именем должника сумму долга и черточку, вроде нашего минуса, а когда должник возвращал деньги, зачеркивали ее, получалось что-то вроде нашего плюса. Можно же плюс считать зачеркнутым минусом!
Современное обозначение положительных и отрицательных чисел со знаками
« + » и « - » применил немецкий математик Видман.
Немецкий математик Михаил Штифель в книге «Полная арифметика» (1544) впервые вводит понятие об отрицательных числах как о числах, меньших нуля (меньших, чем ничто). Это был очень большой шаг вперёд в деле обоснования отрицательных чисел. Он дал возможность рассматривать отрицательные числа не как долг, а совсем по-иному, по-новому. Но Штифель называл отрицательные числа абсурдными; действия с ними, по его словам, «тоже идут абсурдно, навыворот».
После Штифеля ученые стали более уверенно производить действия с отрицательными числами.
Все чаще сохранялись и истолковывались отрицательные решения в задачах.
В XVII в. великий французский математик Рене Декарт предложил откладывать отрицательные числа на числовой оси влево от нуля. Нам сейчас кажется это все таким простым и понятным, но, чтобы дойти до этой мысли, потребовалось восемнадцать веков работы ученой мысли от китайского ученого Чжан Цаня до Декарта.
В трудах Декарта отрицательные числа получили, как говорят, реальное истолкование. Декарт и его последователи признавали их наравне с положительными. Но в действиях над отрицательными числами не все было ясно (например, умножение на них), поэтому многие ученые не желали признавать отрицательные числа за числа действительные. Среди ученых разгорелся большой и долгий спор о сущности отрицательных чисел о том признать отрицательные числа числами действительными или нет. Спор этот после Декарта продолжался около 200 лет. За этот период математика как наука получила очень большое развитие, и на каждом шагу в ней встречались отрицательные числа. Математика стала немыслимой, невозможной без отрицательных чисел. Все большему числу ученых становилось ясно, что отрицательные числа – это числа действительные, такие же реальные, на самом деле существующие числа, как числа положительные.
С трудом завоевали себе место в математике отрицательные числа. Как ни старались ученые избегать их. Все же удавалось это им не всегда. Жизнь ставила перед наукой новые и новые задачи, и все чаще и чаще задачи эти приводили к отрицательным решениям и в Китае, и в Индии, и в Европе. Только в начале XIX в. теория отрицательных чисел закончила свое развитие, и «абсурдные числа» получили всеобщее признание.
Всякий физик постоянно имеет дело с числами: он всегда что-то измеряет, вычисляет, рассчитывает. Везде в его бумагах – числа, числа и числа. Если приглядеться к записям физика, то обнаружится, что при записи чисел он часто использует знаки «+» и «-».
Как же возникают положительные, а тем более отрицательные числа в физике?
Физик имеет дело с различными физическими величинами, описывающими разнообразные свойства окружающих нас предметов и явлений. Высота здания, расстояние от школы до дома, масса и температура человеческого тела, скорость автомобиля, объем банки, сила электрического тока, показатель преломления воды, мощность ядерного взрыва, напряжение между электродами, продолжительность урока или перемены, электрический заряд металлического шарика – все это примеры физических величин. Физическую величину можно измерить.
Не следует думать, что любая характеристика предмета или явление природы может быть измерена и, следовательно, является физической величиной. Это совсем не так. Например, мы говорим: «Какие красивые горы вокруг! И какое красивое озеро там, в низу! А какая красивая ель вон на той скале! Но мы не можем измерить красоту гор, озера, или этой одинокой ели!» Значит такая характеристика, как красота, не является физической величиной.
Измерения физических величин проводятся при помощи измерительных приборов, таких как линейка, часы, весы и т.д.
Итак, числа в физике возникают в результате измерения физических величин, а численное значение физической величины, получаемое в результате измерения, зависит: от того, как определена эта физическая величина; от используемых единиц измерения.
Посмотрим на шкалу обычного уличного термометра.
Она имеет вид, изображенный на шкале 1. На ней нанесены только положительные числа, и поэтому при указании численного значения температуры приходится дополнительно пояснять 20 градусов тепла (выше нуля). Это для физиков неудобно – ведь слова в формулу не подставишь! Поэтому в физике применяется шкала с отрицательными числами.
Посмотрим на физическую карту мира. Участки суши на ней раскрашены различными оттенками зеленого и коричневого цветов, а моря и океаны раскрашены голубым и синим. Каждому цвету соответствует своя высота (для суши) или глубина (для морей и океанов). На карте нарисована шкала глубин и высот, которая показывает, какую высоту (глубину) означает тот или иной цвет,
Используя такую шкалу, достаточно указать число без всяких дополнительных слов: положительные числа отвечают различным местам на суше, находящимся над поверхностью моря; отрицательные числа соответствуют точкам, находящимся под поверхностью моря.
В рассмотренной нами шкале высот за нулевую принимается высота поверхности воды в Мировом океане. Эта шкала используется в геодезии и картографии.
В отличие от этого, в быту мы обычно за нулевую высоту принимаем высоту поверхности земли (в том месте, в котором мы находимся).
3.1 Как в древности считали года?
В разных странах по-разному. Например, в Древнем Египте каждый раз, когда начинал править новый царь, счёт лет начинался заново. Первый год правления царя считался первым годом, второй – вторым и так далее. Когда этот царь умирал и к власти приходил новый, вновь наступал первый год, затем второй, третий. Иным был счет лет, применявшийся жителями одного из древнейших городов мира-Рима. Год основания своего города римляне считали первым, следующий - вторым и так далее.
Счет лет, которым мы пользуемся, возник давно и связан с почитанием Иисуса Христа – основателя христианской религии. Счёт лет от рождения Иисуса Христа постепенно был принят в разных странах .В нашей стране он введён царём Петром Первым триста лет назад. Время, исчисляемое от Рождества Христова, мы называем НАША ЭРА (а пишем сокращённо Н.Э.). Продолжается наша эра две тысячи лет.
Заключение
Большинство людей знают отрицательные числа, но есть и такие у которых представление отрицательных чисел неверное.
Отрицательные числа больше всего встречаются в точных науках, в математике и физике.
В физике отрицательные числа возникают в результате измерений, вычислений физических величин. Отрицательное число – показывает величину электрического заряда. В других науках, как географии и истории, отрицательное число можно заменить словами, например, ниже уровня моря, а в истории – 157 лет до н.э.
Литература
2. Вигасин А.А,.Годер Г.И., «История древнего мира» учебник 5 класса, 2001г.
3.Выговская В.В. « Поурочные разработки по Математике:6 класс» - М.:ВАКО, 2008 г
4. Гельфман Э.Г. «Положительные и отрицательные числа», учебное пособие по математике для 6-го класса, 2001.
5. Детская энциклопедия «Я познаю мир», Москва, «Просвещение», 1995г.
6.Фридман Л. М.. «Изучаем математику», учебное издание, 1994 г.
7. Малыгин К.А. « Элементы историзма в преподавании математики в средней школе», Москва, «Просвещение», 1982г
8. Нурк Э.Р., Тельгмаа А.Э. «Математика 6 класс», Москва, «Просвещение»,1989г