Автор работы: Пользователь скрыл имя, 06 Января 2012 в 17:44, реферат
Результаты теоремы Ролля используются при рассмотрении следующей теоремы о среднем, принадлежащей Лагранжу (1736–1813).
Теорема. Если функция непрерывна на отрезке и дифференцируема во всех его внутренних точках, то существует, по крайней мере, одна точка , в которой .
Теорема Лагранжа
Результаты теоремы Ролля используются при рассмотрении следующей теоремы о среднем, принадлежащей Лагранжу (1736–1813).
Теорема. Если функция непрерывна на отрезке и дифференцируема во всех его внутренних точках, то существует, по крайней мере, одна точка , в которой .
Доказательство. Рассмотрим график функции (рис. 2.1).
Проведем
хорду, соединяющую точки
и
, и запишем ее уравнение. Воспользовавшись
уравнением прямой, проходящей через две
точки на плоскости, получим:
,
откуда:
Рис. 2.1
и .
Составим теперь вспомогательную функцию, вычтя из уравнения кривой уравнение хорды: .
Полученная функция непрерывна на отрезке и дифференцируема во всех его внутренних точках. Кроме того, вычисление в точках и показывает, что . Значит, функция на отрезке удовлетворяет требованиям теоремы Ролля. Но в этом случае существует такая точка , в которой .
Вычислим производную функции : .
Согласно теореме Ролля в точке производная , то есть и , что и требовалось доказать.
Геометрический смысл теоремы Лагранжа следующий: внутри отрезка существует, по крайней мере, одна точка, в которой касательная параллельна хорде, стягивающей кривую на данном отрезке. В частности, при теорема переходит в теорему Ролля.
Теорему Лагранжа часто записывают в следующем виде: ,
то есть приращение
функции равно приращению аргумента,
умноженному на производную функции
в некоторой внутренней точке. В связи
с этим теорему Лагранжа называют также
теоремой о конечных приращениях.
. Правило Лопиталя
Теорема. Пусть функции и непрерывны и дифференцируемы во всех точках полуинтервала и при совместно стремятся к нулю или бесконечности. Тогда, если отношение их производных имеет предел при , то этот же предел имеет отношение и самих функций, то есть
Проведем доказательство данной теоремы только для случая, когда . Так как пределы у обеих функций одинаковы, то доопределим их на отрезке , положив, что при выполняется равенство .
Возьмем
точку
. Так как функции
и
удовлетворяют теореме Коши (п. 2.14),
применим ее на отрезке
:
, где .
Так как , то .
Перейдем в данном равенстве к пределу: .
Но если , то и , находящееся между точками и , будет стремится к , значит
. Отсюда, если , то и , то есть , что и требовалось доказать. Если при , то снова получается неопределенность вида и правило Лопиталя можно применять снова, то есть
Доказательство правила Лопиталя для случая проводится сложнее, и мы его рассматривать не будем.
При
раскрытии неопределенностей