Программирование в компьютерных системах

Автор работы: Пользователь скрыл имя, 28 Апреля 2015 в 22:04, отчет по практике

Описание

В результате изучения курса Учебная практика я ознакомилась со своей специальностью и приобрела некоторые практические навыки. Также смогла поближе познакомиться с Автоматизированными системами обработки данных и другими системами, касающимися моей специализации.

Содержание

1. Специальность "Программирование в компьютерных системах" 2
Область профессиональной деятельности: 2
Объекты профессиональной деятельности: 2
Задачи профессиональной деятельности 2
Общие компетенции 4
Основные виды профессиональной деятельности: 4
2.Автоматизированные информационные системы и технологии 6
3.Квалификационные требования к оператору ЭВМ 9
4. Системное и прикладное программирование 11
Этапы развития ПО 11
Общие понятия об алгоритмизации. 27
Основные понятия системного и прикладного программирования. 35
Этапы подготовки программы 40
Основные задачи системного и прикладного программирования. 45
Процесс создания программы. 46
Назначение и характеристика современных языков программирования. 48
5. Основы программирования на языке VBA 58
Программирование линейных алгоритмов. 59
Организация ввода-вывода информации. 65
Программы разветвляющих алгоритмов. 70
Программирование циклических алгоритмов. 76
Программирование алгоритмов с массивами. 82
Изучение объектной модели. 87
Использование элементов управления 99

Работа состоит из  1 файл

учебная практика 3 курс.doc

— 892.00 Кб (Скачать документ)

Возможен также вариант, в котором редактирование связей выполняется при каждом запуске программы на выполнение и совмещается с загрузкой. Это делает Связывающий Загрузчик. Вариант связывания при запуске более расходный, т.к. затраты на связывание тиражируются при каждом запуске. Но он обеспечивает:

большую гибкость в сопровождении, так как позволяет менять отдельные объектные модули программы, не меняя остальных модулей;

экономию внешней памяти, т.к. объектные модули, используемые во многих программах не копируются в каждый загрузочный модуль, а хранятся в одном экземпляре.

Вариант интерпретации подразумевает прямое исполнение исходного модуля.

Интерпретация - реализация смысла некоторого синтаксически законченного текста, представленного на конкретном языке.

Интерпретатор читает из исходного модуля очередное предложение программы, переводит его в машинный язык и выполняет. Все затраты на подготовку тиражируются при каждом выполнении, следовательно, интепретируемая программа принципиально менее эффективна, чем транслируемая. Однако, интерпретация обеспечивает удобство разработки, гибкость в сопровождении и переносимость.

Примеры интерпретаторов: языки процедур (sell, REXX), JVM.

Не обязательно подготовка программы должна вестись на той же вычислительной системе и в той же операционной среде, в которых программа будет выполняться. Системы, обеспечивающие подготовку программ в среде, отличной от целевой называются кросс-системами. В кросс-системе может выполняться вся подготовка или ее отдельные этапы:

Макрообработка и трансляция

Редактирование связей

Отладка

Типовое применение кросс-систем - для тех случаев, когда целевая вычислительная среда просто не имеет ресурсов, необходимых для подготовки программ, например, встроенные системы.

Программные средства, обеспечивающие отладку программы на целевой системе можно также рассматривать как частный случай кросс-системы.

Основные задачи системного и прикладного программирования.

Назначение программирования - разработка программ управления компьютером с целью решения различных информационных задач.

Специалисты, профессионально занимающиеся программированием, называются программистами. В первые годы существования ЭВМ для использования компьютера в любой области нужно было уметь программировать. В 1970-х - 80-х годах XX века начинает развиваться прикладное программное обеспечение. Бурное распространение прикладного ПО произошло с появлением персональных компьютеров. Стало совсем не обязательным уметь программировать для того, чтобы воспользоваться компьютером. Люди, работающие на компьютерах, разделились на пользователей и программистов. В настоящее время пользователей гораздо больше, чем программистов.

Может возникнуть впечатление, что программисты теперь уже и не нужны! Но кто же тогда будет создавать вес операционные системы, редакторы, графические пакеты, компьютерные игры и многое другое? Программисты, безусловно, нужны, причем задачи, которые им приходится решать, со временем становятся все сложнее.

Программирование принято разделять на системное и прикладное. Системные программисты занимаются разработкой системного программного обеспечения: операционных систем, утилит и пр., а также систем программирования. Прикладные программисты создают прикладные программы: редакторы, табличные процессоры, игры, обучающие программы и многие другие. Спрос на высококвалифицированных программистов, как системных, так и прикладных, очень большой. Системный программист почти не занимается прикладными программами, облегчающими жизнь пользователям. Его задача – выстроить многоуровневую структуру, которая объединит отдельные компоненты в модули, а модули – в единый организм компьютера или компьютерную сеть.

Процесс создания программы.

В наши дни в условиях постоянного развития процесс создания программ является плодом эволюции навыков и опыта, выработанного программистами и разработчиками.

В процессе создания любой программы можно выделить несколько этапов.

1. Постановка задачи — выполняется специалистом в предметной области на естественном языке (русском, английском и т. д.). Необходимо определить цель задачи, ее содержание и общий подход к решению. Возможно, что задача решается точно (аналитически), и без компьютера можно обойтись. Уже на этапе постановки надо учитывать эффективность алгоритма решения задачи на ЭВМ, ограничения, накладываемые аппаратным и программным обеспечением (АО и ПО).

2. Анализ задачи и моделирование — определяются исходные данные и результат, выявляются ограничения на их значения, выполняется формализованное описание задачи и построение (выбор) математической модели, пригодной для решения на компьютере.

3. Разработка или выбор алгоритма решения задачи — выполняется на основе ее математического описания. Многие задачи можно решить различными способами. Программист должен выбрать оптимальное решение. Неточности в постановке, анализе задачи или разработке алгоритма могут привести к скрытой ошибке — программист получит неверный результат, считая его правильным.

4. Проектирование общей структуры программы — формируется модель решения с последующей детализацией и разбивкой на подпрограммы, определяется "архитектура" программы, способ хранения информации (набор переменных, массивов и т. п.).

5. Кодирование — запись алгоритма на языке программирования. Современные системы программирования позволяют ускорить процесс разработки программы, автоматически создавая часть ее текста, однако творческая работа по-прежнему лежит на программисте. Для успешной реализации целей проекта программисту необходимо использовать методы структурного программирования.

6. Отладка и тестирование программы. Под отладкой понимается устранение ошибок в программе. Тестирование позволяет вести их поиск и, в конечном счете, убедиться в том, что полностью отлаженная программа дает правильный результат. Для этого разрабатывается система тестов — специально подобранных контрольных примеров с такими наборами параметров, для которых решение задачи известно. Тестирование должно охватывать все возможные ветвления в программе, т. е. проверять все ее инструкции, и включать такие исходные данные, для которых решение невозможно. Проверка особых, исключительных ситуаций, необходима для анализа корректности. Например, программа должна отказать клиенту банка в просьбе выдать сумму, отсутствующую на его счете. В ответственных проектах большое внимание уделяется так называемой "защите от дурака" подразумевающей устойчивость программы к неумелому обращению пользователя. Использование специальных программ — отладчиков, которые позволяют выполнять программу по отдельным шагам, просматривая при этом значения переменных, значительно упрощает этот этап.

7. Анализ результатов — если программа выполняет моделирование какого-либо известного процесса, следует сопоставить результаты вычислений с результатами наблюдений. В случае существенного расхождения необходимо изменить модель.

8. Публикация результатов работы, передача заказчику для эксплуатации.

9. Сопровождение программы — включает консультации представителей заказчика по работе с программой и обучение персонала. Недостатки и ошибки, замеченные в процессе эксплуатации, должны устраняться.

 

Назначение и характеристика современных языков программирования.

Связь между языком, на котором мы думаем, программируем, и задачами и решениями, которые мы можем представлять в своем воображении, очень близка. Язык предоставляет программисту набор концептуальных инструментов, если они не отвечают задаче, то их просто игнорируют. Хорошее проектирование и отсутствие ошибок не может гарантироваться чисто за счет языковых средств. Сегодня практически все программы создаются с помощью языков программирования.

Неотъемлемая часть современных ЭВМ – системы программного обеспечения, являющиеся логическим продолжением логических средств ЭВМ, расширяющим возможности аппаратуры и сферу их использования. Основное назначение программного обеспечения – повышение эффективности труда пользователя, а также увеличение пропускной способности ЭВМ посредством сокращения времени и затрат на подготовку и выполнение программ.

Разоберем несколько основных современных языков, таких как Паскаль, Ассемблер, С++, Бейсик, Лого, Форт, Пролог, Рефал и Лекс, а также системы программирования и их составляющие (машинный язык, системы символического кодирования, автокоды, макросы, процедурно-ориентированные системы, проблемно-ориентированные системы, диалоговые языки, непроцедурные языки).

Если проследить историю используемых сегодня языков программирования, таких как Си и Паскаль (а равно и менее популярных Бэйсик, Фортран или Ада), то окажется, что все они были созданы на рубеже 60-х и 70-х годов. Иными словами, возраст современных языков программирования (за исключением Явы, о которой разговор особый), перевалил за третий десяток, что для компьютерной индустрии является сроком экстремальным. Современные языки программирования старше Интернета, Windows и персонального компьютера минимум на десятилетие. При этом новые языки не переставали регулярно появляться, однако ни один из них не задержался в практике программирования, хотя приносимые ими новые идеи дополняли уже известные языки (как это произошло с объектно-ориентированным программированием).

Другой важной особенностью языкотворчества последних десятилетий можно считать прекращение попыток создания "универсального" языка программирования, призванного объединить в себе все последние достижения в области разработки языков (из попыток 60-х _ 70-х годов можно вспомнить Алгол, PL/1 или Аду). Крупные "языковые" проекты безвозвратно ушли в прошлое вместе с порожденными ими языками.

Наконец, появление персонального компьютера и ОС с графическим интерфейсом (прежде всего MacOS и Windows) переместило внимание разработчиков программного обеспечения из сферы языков программирования в другие области средств разработки ПО, такие, как визуальное или объектно-ориентированное программирование, сетевые протоколы или модели баз данных. Программист сегодня использует в качестве инструмента не столько язык, сколько конкретную систему программирования (например, Delphi), а какой язык является для нее базовым, не так уж важно.

Итак, интерес к языкам программирования снизился, а круг используемых языков стабилизировался. В некотором смысле можно считать, что в области языков программирования "все сказано", и развитие средств разработки ПО пойдет дальше другими путями. Наступил удачный момент для анализа современных языков программирования и выяснения достигнутых практических результатов.

Современные языки программирования

Первые несколько поколений ЭВМ строились на классических принципах, сформулированных американским математиком Джоном фон Нейманом в 1946 г., когда начались разработки цифровых ЭВМ с программным управлением. Одним из основных принципов Д. фон Неймана является принцип хранимой программы. Под программой вычислительной машины понимается описание алгоритма решения задачи, заданное на языке вычислительной машины. Таким образом, языки программирования – это формальные языки общения человека с ЭВМ, предназначенные для описания совокупности инструкций, выполнение которых обеспечивает правильное решение требуемой задачи, т.е. для описания подлежащих обработке данных (информации) и алгоритмов (программ). Основная роль языков программирования заключается в планировании действий по обработке информации. Любой язык программирования основан на системе понятий, на основе которой человек может выражать свои соображения.

Теоретическую основу языков программирования составляют алгоритмические языки. В настоящее время для ЭВМ разработано значительное количество языков программирования. Они отличаются друг от друга различными свойствами, а значит, и областью применения.

Паскаль

В 1968 году Никлас Вирт (Niklaus Wirth) написал первый компилятор языка Pascal (Паскаль). Этот язык получил название в честь выдающегося французского математика Блеза Паскаля (Blaise Pascal). Язык Pascal — удачный язык общего применения, подходящий для программирования как научных задач, так и задач, связанных с коммерческой деятельностью. Средства ввода/вывода этого языка несколько слабее, чем у таких коммерческих языков, как COBOL, поэтому он никогда не претендовал на его замещение. Тем не менее после первого опубликования Pascal был довольно основательным языком, который успешно справлялся со своей работой.

Популярность языка Pascal резко подскочила в 1970-х. Самое большое преимущество этого языка — поддержка концепции структурного программирования, позволяющей делать программы более удобными для изменения. Идеология структурного программирования интегрирована в язык, поэтому программы на языке Pascal проще в обслуживании, чем программы, написанные на других языках того времени.

В течение 1970-х годов Pascal был «единственным языком программирования, который всех устраивал». Компания IBM с помощью языка PL/I делала попытку создать что-то подобное. Так же как и PL/I, Pascal не достиг наивысшей цели. Популярность языка Pascal упала так же быстро, как и выросла. В 1970-х наблюдался огромный рост применения языка Pascal, а в 1980-х — резкий спад интереса к нему.

Несмотря на потерю занимаемого положения, Pascal открыл для других языков дорогу к поддержке структурных концепций, обслуживаемости программ и бесплатному использованию программ.

Ассемблер

Язык Ассемблера - это символическое представление машинного языка. Он облегчает процесс программирования по сравнению с программированием в машинных кодах. Некоторые задачи, например, обмен с нестандартными устройствами обработки данных сложных структур невозможно решить с помощью языков программирования высокого уровня. Это под силу ассемблеру. В принципе, язык Ассемблер является машинным языком. И программист, реализующий какую-либо задачу на язык высокого уровня, с помощью Ассемблера может определить осмысленно ли решение данной задачи, с точки зрения использования ЭВМ. Ассемблер имеет одну особенность, которая отпугивает многих начинающих языков программистов,- ассемблер является машинно-зависимым языком. Это означает, что пишущий на ассемблере работает непосредственно с ресурсами компьютера, что требует хорошего знания его архитектуры, логики работы операционной системы, а также большой аккуратности при написании программы.

Информация о работе Программирование в компьютерных системах