Автор работы: Пользователь скрыл имя, 15 Декабря 2010 в 13:39, курсовая работа
Цель исследования: на основе теоретического анализа изучить механизм действия помехоустойчивого кодирования.
Объект исследования: код Шеннона – Фано.
В соответствии с целью работы были определены следующие задачи исследования:
1. Изучить основные типы кодов помехоустойчивого кодирования;
2. Исследовать один из выбранных кодов (код Шеннона - Фано)
3. Реализовать код Шеннона – Фано на языке программирования Pascal.
Введение……………………………………………………………………………3
Глава 1.
1.1 Основные принципы. Типы кодов …………………………………………...5
1.2 Линейные блочные коды………………………………………………..7
1.2.1 Код с проверкой на четность……………………………………….9
1.2.2 Порождающая матрица линейного блочного кода …………………12
1.2.3 Синдром и обнаружение ошибок ……………………………………16
1.2.4 Синдромное декодирование линейных блочных кодов …………18
1.2.5 Вес и расстояние Хемминга. Способность кодов обнаруживать и исправлять ошибки ………………………………………………………………21
1.3 Циклические коды……………………………………………………..26
1.3.1 Кодирование с использованием циклических кодов……………..27
1.3.2 Вычисление синдрома и исправление ошибок в циклических кодах………………………………………………………………………………32
1.3.3 Неалгебраические методы декодирования циклических кодов …..34
1.4 Сверточные коды……………………………………………………..38
1.4.1 Кодирование с использованием сверточных кодов ………………..39
1.4.2 Синдромное декодирование сверточных кодов………………….43
1.4.3 Декодирование сверточных кодов. Алгоритм Витерби …………46
Глава 2
2.1 Коды Шеннона – Фано (Теоритическая часть)……………………..50
2.2 Описание Кода Шеннона – Фано……………………………………55
Заключение ……………………………………………………………………….56
Литература………………………………………………………………………..57
Приложение1……………………………………………………………………..58
Рис. 1.1
Блочный
код, обладающий свойствами линейности
и систематичности, называется
линейным блочным систематическим (n,
k)-кодом.
1.2.1 Код с проверкой на четность
Самым простым линейным блочным кодом является (n,n-1)-код, построенный с помощью одной общей проверки на четность. Например, кодовое слово (4,3)-кода можно записать в виде вектора-столбца:
= ( m0,
m1, m2,
m0+m1+m2
),
где mi - символы информационной последовательности, принимающие значения 0 и 1, а суммирование производится по модулю 2 ( mod2 ).
Поясним основную идею проверки на четность.
Пусть информационная последовательность источника имеет вид
Тогда
соответствующая ей кодовая последовательность
будет выглядеть следующим
U = ( U0, U1, U2, U3 ) = ( 1 0 1 0 ), (1.3)
где проверочный символ U3 формируется путем суммирования по mod2 символов информационной последовательности m :
U3 = m0
+ m1
+ m2
.
Нетрудно заметить, что если число единиц в последовательности m четно, то результатом суммирования будет 0, если нечетно — 1, то есть проверочный символ дополняет кодовую последовательность таким образом, чтобы количество единиц в ней было четным. [6]
При передаче по каналам связи в принятой последовательности возможно появление ошибок, то есть символы принятой последовательности могут отличаться от соответствующих символов переданной кодовой последовательности (нуль переходит в единицу, а 1 − в 0).
Если ошибки в символах имеют одинаковую вероятность и независимы, то вероятность того, что в n-позиционном коде произойдет только одна ошибка, составит
P1 = n× Pош ×
(1- Pош)n-1
(то есть в одном бите ошибка есть, а во всех остальных n - 1 битах ошибки нет).
Вероятность того, что произойдет две ошибки, определяется уже числом возможных сочетаний ошибок по две (в двух произвольных битах ошибка есть, а во всех остальных n - 2 битах ошибки нет):
P2 = Cn2 ×
Pош × (1- Pош)n-2
,
и аналогично для ошибок более высокой кратности.
Если считать, что вероятность ошибки на символ принятой последовательности Pош достаточно мала (Pош<<1), а в противном случае передача информации не имеет смысла, то вероятность выпадения ровно l ошибок составит Pl @ Pошl.
Отсюда видно, что наиболее вероятными являются одиночные ошибки, менее вероятными — двойные, еще меньшую вероятность будут иметь трехкратные ошибки и т. д.
Если при передаче рассматриваемого (4,3)-кода произошла одна ошибка, причем неважно, в какой его позиции, то общее число единиц в принятой последовательности r уже не будет четным.
Таким образом, признаком отсутствия ошибки в принятой последовательности может служить четность числа единиц. Поэтому такие коды и называются кодами с проверкой на четность.
Правда, если в принятой последовательности r произошло две ошибки, то общее число единиц в ней снова станет четным и ошибка обнаружена не будет. Однако вероятность двойной ошибки значительно меньше вероятности одиночной, поэтому наиболее вероятные одиночные ошибки таким кодом обнаруживаться все же будут.
На основании общей идеи проверки на четность и проверочного уравнения (1.4) легко организовать схему кодирования - декодирования для произвольного кода с простой проверкой на четность.
Схема
кодирования может выглядеть
следующим образом (рис. 1.2):
Рис. 1.2
Декодирующее устройство для кода с проверкой на четность изображено на рис. 1.3.
Рис.
1.3
Декодер, как это видно из рис. 1.3, проверяет на четность общее число единиц в принятой последовательности и выдает на своем выходе нуль или единицу в зависимости от того, выполнилась проверка или нет.[17]
Отметим следующий момент. Если посимвольно сложить два кодовых слова, принадлежащих рассматриваемому (4, 3)-коду:
a = ( a0, a1, a2, a0 + a1 + a2 ), и b = ( b0, b1, b2, b0 + b1 + b2 ), (1.7)
то получим
с = ( a0+b0, a1+b1, a2+b2, a0+b0+a1+b1+a2+b2) = ( c0, c1, c2, c0+c1+c2 ), (1.8)
то есть проверочный символ в новом слове с определяется по тому же правилу, что и в слагаемых. Поэтому с также является кодовым словом данного кода.
Этот пример отражает важное свойство линейных блочных кодов — замкнутость, означающее, что сумма двух кодовых слов данного кода также является кодовым словом.
Несмотря
на свою простоту и не очень высокую
эффективность, коды с проверкой
на четность широко используются в
системах передачи и хранения информации.
Они ценятся за невысокую избыточность:
достаточно добавить к передаваемой
последовательности всего один избыточный
символ − и можно узнать, есть ли в принятой
последовательности ошибка. Правда, определить
место этой ошибки и, следовательно, исправить
ее, пока нельзя. Можно лишь повторить
передачу слова, в котором была допущена
ошибка, и тем самым ее исправить.
1.2.2
Порождающая матрица
линейного блочного
кода
Только что в качестве примера были рассмотрены два простейших корректирующих кода - код с простой проверкой на четность, позволяющий обнаруживать однократную ошибку в принятой последовательности, и блочный итеративный код, исправляющий одну ошибку с помощью набора проверок на четность по строкам и столбцам таблицы. Однако формальное правило, по которому осуществляется кодирование, то есть преобразование информационной последовательности в кодовое слово, по-настоящему еще не определено. Так как же задаются блочные коды?[11]
Простейшим способом описания, или задания, корректирующих кодов является табличный способ, при котором каждой информационной последовательности просто назначается кодовое слово из таблицы кода (табл. 1.2)
Таблица 1.2
m | U |
000 | 0000 |
001 | 0011 |
010 | 0101 |
011 | 0110 |
100 | 1001 |
101 | 1010 |
110 | 1100 |
111 | 1111 |
Такой способ описания кодов, кстати, применим для любых, а не только линейных кодов. Однако при больших k размер кодовой таблицы оказывается слишком большим, чтобы им пользоваться на практике (для кода с простой проверкой на четность двухбайтового слова размер таблицы составит ~ 25 * 216 = 2000000 двоичных символов).
Другим способом задания линейных блочных кодов является использование так называемой системы проверочных уравнений, определяющих правило, по которому символы информационной последовательности преобразуются в кодовые символы. Для того же примера система проверочных уравнений будет выглядеть следующим образом:
U0 = m0,
U1 = m1, (1.9)
U2 = m2,
U3 = m0 + m1 + m2.
Однако наиболее удобным и наглядным способом описания линейных блочных кодов является их задание с использованием порождающей матрицы, являющейся компактной формой представления системы проверочных уравнений:
1 0 0 … 0 | P00 P01 . . . . P0, n- k- 1 | ||
G = | 0 1 0 … 0 | P10 P11 . . . . P1, n- k- 1 | |
……… | ……………… | . (1.10) | |
0 0 0 … 1 | Pk- 1, 0 Pk- 1, 1 . . . . Pk- 1, n- k- 1 | ||
единичная
матрица
I |
матрица Р
k*(n- k) |
Информация о работе Программная модель помехоустойчивого кодирования