Автор работы: Пользователь скрыл имя, 28 Января 2013 в 15:44, шпаргалка
Работа содержит ответы на вопросы для экзамена (или зачета) по дисциплине "Системное программное обеспечение"
Другим аспектом
Асимметричное мультипроцессирование
является наиболее простым способом
организации вычислительного
Функционирование системы по принципу «ведущий-ведомый» предполагает выделение одного из процессоров в качестве «ведущего», на котором работает операционная система и который управляет всеми остальными «ведомыми» процессорами. То есть ведущий процессор берет на себя функции распределения задач и ресурсов, а ведомые процессоры работают только как обрабатывающие устройства и никаких действий по организации работы вычислительной системы не выполняют.
Так как операционная система работает только на одном процессоре и функции управления полностью централизованы, то такая операционная система оказывается не намного сложнее ОС однопроцессорной системы.
Асимметричная организация
вычислительного процесса
Симметричное
Симметричное
Операционная система
Понятия «процесс» и «поток»
Чтобы поддерживать мультипрограммирование, ОС должна определить и оформить для себя те внутренние единицы работы, между которыми будет разделяться процессор и другие ресурсы компьютера. В настоящее время в большинстве операционных систем определены два типа единиц работы. Более крупная единица работы, обычно носящая название процесса, или задачи, требует для своего выполнения нескольких более мелких работ, для обозначения которых используют термины «поток», или «нить».
С самых общих позиций все множество алгоритмов планирования можно разделить на два класса: вытесняющие и невытесняющие алгоритмы планирования.
Невытесняющие (non-preemptive) алгоритмы основаны на том, что активному потоку позволяется выполняться, пока он сам, по собственной инициативе, не отдаст управление операционной системе для того, чтобы та выбрала из очереди другой готовый к выполнению поток.
Вытесняющие (preemptive) алгоритмы — это такие способы планирования потоков, в которых решение о переключении процессора с выполнения одного потока на выполнение другого потока принимается операционной системой, а не активной задачей.
Основным различием между
Для пользователей это означает, что управление системой теряется на произвольный период времени, который определяется приложением (а не пользователем). Если приложение тратит слишком много времени на выполнение какой-либо работы, например на форматирование диска, пользователь не может переключиться с этой задачи На другую задачу, например на текстовый редактор, в то время как форматирование продолжалось бы в фоновом режиме.
Поэтому разработчики приложений для операционной среды с невытесняющей многозадачностью вынуждены, возлагая на себя часть функций планировщика, создавать приложения так, чтобы они выполняли свои задачи небольшими частями. Например, программа форматирования может отформатировать одну дорожку дискеты и вернуть управление системе. После выполнения других задач система возвратит управление программе форматирования, чтобы та отформатировала следующую дорожку. Подобный метод разделения времени между задачами работает, но он существенно затрудняет разработку программ и предъявляет повышенные требования к квалификации программиста. Программист должен обеспечить «дружественное» отношение своей программы к другим выполняемым одновременно с ней программам. Для этого в программе должны быть предусмотрены частые передачи управления операционной системе. Крайним проявлением «не дружественности» приложения является его зависание, которое приводит к общему краху системы. В системах с вытесняющей многозадачностью такие ситуации, как правило, исключены, так как центральный планирующий механизм имеет возможность снять зависшую задачу с выполнения.
Однако распределение функций планирования потоков между системой и приложениями не всегда является недостатком, а при определенных условиях может быть и преимуществом, потому что дает возможность разработчику приложений самому проектировать алгоритм планирования, наиболее подходящий для данного фиксированного набора задач. Так как разработчик сам определяет в программе момент возвращения управления, то при этом исключаются нерациональные прерывания программ в «неудобные» для них моменты времени. Кроме того, легко разрешаются проблемы совместного использования данных: задача во время каждого цикла выполнения использует их монопольно и уверена, что на протяжении этого периода никто другой не изменит данные. Существенным преимуществом невытесняющего планирования является более высокая скорость переключения с потока на поток.
Понятия вытесняющих и невытесняющих алгоритмов планирования иногда отождествляют с понятиями приоритетных и бесприоритетных дисциплин, что, возможно, связано со звучанием соответствующих англоязычных терминов «preemptive» и «non-preemptive». Однако это совершенно неверно, так как приоритеты в том и другом случаях могут как использоваться, так и не использоваться.
Почти во всех современных операционных
системах, ориентированных на высокопроизводительное
выполнение приложений, реализованы
вытесняющие алгоритмы
Примером эффективного использования невытесняющего планирования являются файл-серверы NetWare 3.x и 4.x, в которых в значительной степени благодаря такому планированию достигнута высокая скорость выполнения файловых операций. В соответствии с концепцией невытесняющего планирования, чтобы не занимать процессор слишком долго, поток в NetWare сам отдает управление планировщику ОС, используя следующие системные вызовы:
ThreadSwitch — поток, вызвавший эту функцию, считает себя готовым к немедленному выполнению, но отдает управление для того, чтобы могли выполняться и другие потоки;
ThreadSwitchWithDelay — функция аналогична предыдущей, но поток считает, что будет готов к выполнению только через определенное количество переключений с потока на поток;
Delay — функция аналогична предыдущей, но задержка дается в миллисекундах;
ThreadSwitchLowPriority — функция отдачи управления, отличается от Thread-Switch тем, что поток просит поместить его в очередь готовых к выполнению, но низкоприоритетных потоков.
Алгоритмы планирования, основанные на квантовании
В основе многих вытесняющих алгоритмов планирования лежит концепция квантования. В соответствии с этой концепцией каждому потоку поочередно для выполнения предоставляется ограниченный непрерывный период процессорного времени — квант. Смена активного потока происходит, если:
1.поток завершился и покинул систему;
2.произошла ошибка;
3.поток перешел в состояние ожидания;
4.исчерпан квант процессорного времени, отведенный данному потоку.
Поток, который исчерпал свой квант,
переводится в состояние
Кванты, выделяемые потокам, могут быть одинаковыми для всех потоков или различными. Рассмотрим, например, случай, когда всем потокам предоставляются кванты одинаковой длины q. Если в системе имеется п потоков, то время, которое поток проводит в ожидании следующего кванта, можно грубо оценить как q(n-l). Чем больше потоков в системе, тем больше время ожидания, тем меньше возможности вести одновременную интерактивную работу нескольким пользователям. Но если величина кванта выбрана очень небольшой, то значение произведения q(n-l) все равно будет достаточно мало для того, чтобы пользователь не ощущал дискомфорта от присутствия в системе других пользователей. Типичное значение кванта в системах разделения времени составляет десятки миллисекунд.
Алгоритмы планирования, основанные на приоритетах
Другой важной концепцией, лежащей
в основе многих вытесняющих
алгоритмов планирования, является
приоритетное обслуживание. Приоритетное
обслуживание предполагает
Приоритет может выражаться целым или дробным, положительным или отрицательным значением. В некоторых ОС принято, что приоритет потока тем выше, чем больше (в арифметическом смысле) число, обозначающее приоритет. В других системах, наоборот, чем меньше число, тем выше приоритет.
В большинстве операционных систем,
поддерживающих потоки, приоритет потока
непосредственно связан с приоритетом
процесса, в рамках которого выполняется
данный поток. Приоритет процесса назначается
операционной системой при его создании.
Значение приоритета включается в описатель
процесса и используется при назначении
приоритета потокам этого процесса.
При назначении приоритета вновь
созданному процессу ОС учитывает, является
этот процесс системным или